
Mar Cuadrado-Tejedor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9221473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenylbutyrate Ameliorates Cognitive Deficit and Reduces Tau Pathology in an Alzheimer's Disease Mouse Model. Neuropsychopharmacology, 2009, 34, 1721-1732.	2.8	367
2	Phenylbutyrate rescues dendritic spine loss associated with memory deficits in a mouse model of Alzheimer disease. Hippocampus, 2012, 22, 1040-1050.	0.9	218
3	Phosphodiesterases as Therapeutic Targets for Alzheimer's Disease. ACS Chemical Neuroscience, 2012, 3, 832-844.	1.7	216
4	Rosiglitazone Rescues Memory Impairment in Alzheimer's Transgenic Mice: Mechanisms Involving a Reduced Amyloid and Tau Pathology. Neuropsychopharmacology, 2010, 35, 1593-1604.	2.8	200
5	Tadalafil crosses the blood–brain barrier and reverses cognitive dysfunction in a mouse model of AD. Neuropharmacology, 2013, 64, 114-123.	2.0	143
6	Insulinâ€ŀike growth factor 2 reverses memory and synaptic deficits in <scp>APP</scp> transgenic mice. EMBO Molecular Medicine, 2014, 6, 1246-1262.	3.3	114
7	Enhanced Expression of the Voltage-Dependent Anion Channel 1 (VDAC1) in Alzheimer's Disease Transgenic Mice: An Insight into the Pathogenic Effects of Amyloid-β. Journal of Alzheimer's Disease, 2011, 23, 195-206.	1.2	105
8	Early Changes in Hippocampal Eph Receptors Precede the Onset of Memory Decline in Mouse Models of Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 17, 773-786.	1.2	101
9	Overexpression of wild-type human APP in mice causes cognitive deficits and pathological features unrelated to Al ² levels. Neurobiology of Disease, 2009, 33, 369-378.	2.1	95
10	A First-in-Class Small-Molecule that Acts as a Dual Inhibitor of HDAC and PDE5 and that Rescues Hippocampal Synaptic Impairment in Alzheimer's Disease Mice. Neuropsychopharmacology, 2017, 42, 524-539.	2.8	86
11	Decreased levels of guanosine 3′, 5′â€monophosphate (c <scp>GMP</scp>) in cerebrospinal fluid (<scp>CSF</scp>) are associated with cognitive decline and amyloid pathology in <scp>A</scp> lzheimer's disease. Neuropathology and Applied Neurobiology, 2015, 41, 471-482.	1.8	84
12	Design, Synthesis, and Biological Evaluation of First-in-Class Dual Acting Histone Deacetylases (HDACs) and Phosphodiesterase 5 (PDE5) Inhibitors for the Treatment of Alzheimer's Disease. Journal of Medicinal Chemistry, 2016, 59, 8967-9004.	2.9	71
13	Sildenafil protects against 3-nitropropionic acid neurotoxicity through the modulation of calpain, CREB, and BDNF. Neurobiology of Disease, 2010, 38, 237-245.	2.1	64
14	Targeting RNA-Mediated Toxicity in C9orf72 ALS and/or FTD by RNAi-Based Gene Therapy. Molecular Therapy - Nucleic Acids, 2019, 16, 26-37.	2.3	64
15	Phenylbutyrate is a Multifaceted Drug that Exerts Neuroprotective Effects and Reverses the AlzheimerA´s Disease-like Phenotype of a Commonly Used Mouse Model. Current Pharmaceutical Design, 2013, 19, 5076-5084.	0.9	59
16	Chronic Mild Stress Accelerates the Onset and Progression of the Alzheimer's Disease Phenotype in Tg2576 Mice. Journal of Alzheimer's Disease, 2012, 28, 567-578.	1.2	54
17	Design, synthesis, biological evaluation and inÂvivo testing of dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 2018, 150, 506-524.	2.6	48
18	Pharmacokinetic investigation of sildenafil using positron emission tomography and determination of its effect on cerebrospinal fluid <scp>cGMP</scp> levels. Journal of Neurochemistry, 2016, 136, 403-415.	2.1	41

#	Article	IF	CITATIONS
19	Chronic mild stress in mice promotes cognitive impairment and CDK5-dependent tau hyperphosphorylation. Behavioural Brain Research, 2011, 220, 338-343.	1.2	37
20	Current Animal Models of Alzheimerââ,¬â"¢s Disease: Challenges in Translational Research. Frontiers in Neurology, 2014, 5, 182.	1.1	35
21	Taking Advantage of the Selectivity of Histone Deacetylases and Phosphodiesterase Inhibitors to Design Better Therapeutic Strategies to Treat Alzheimer's Disease. Frontiers in Aging Neuroscience, 2019, 11, 149.	1.7	32
22	Epigenetic drugs in Alzheimer's disease. Biomolecular Concepts, 2013, 4, 433-445.	1.0	30
23	Impact of Scaffold Exploration on Novel Dual-Acting Histone Deacetylases and Phosphodiesterase 5 Inhibitors for the Treatment of Alzheimer's Disease. ACS Chemical Neuroscience, 2017, 8, 638-661.	1.7	30
24	Long-term Phenylbutyrate administration prevents memory deficits in Tg2576 mice by decreasing A Beta. Frontiers in Bioscience - Elite, 2011, E3, 1375-1384.	0.9	29
25	Discovery of <i>in Vivo</i> Chemical Probes for Treating Alzheimer's Disease: Dual Phosphodiesterase 5 (PDE5) and Class I Histone Deacetylase Selective Inhibitors. ACS Chemical Neuroscience, 2019, 10, 1765-1782.	1.7	28
26	Multitarget Approach for the Treatment of Alzheimer's Disease: Inhibition of Phosphodiesterase 9 (PDE9) and Histone Deacetylases (HDACs) Covering Diverse Selectivity Profiles. ACS Chemical Neuroscience, 2019, 10, 4076-4101.	1.7	27
27	Age-Related Mitochondrial Alterations without Neuronal Loss in the Hippocampus of a Transgenic Model of Alzheimer's Disease. Current Alzheimer Research, 2013, 10, 390-405.	0.7	27
28	Phosphodiesterase Inhibition in Cognitive Decline. Journal of Alzheimer's Disease, 2014, 42, S561-S573.	1.2	24
29	PLA2G4E, a candidate gene for resilience in Alzheimer´s disease and a new target for dementia treatment. Progress in Neurobiology, 2020, 191, 101818.	2.8	23
30	Synthesis of ¹³ Nâ€labelled radiotracers by using microfluidic technology. Journal of Labelled Compounds and Radiopharmaceuticals, 2012, 55, 332-338.	0.5	21
31	Synthesis and Evaluation of 13N-Labelled Azo Compounds for β-Amyloid Imaging in Mice. Molecular Imaging and Biology, 2014, 16, 538-549.	1.3	14
32	Immunomodulatory Properties of Carvone Inhalation and Its Effects on Contextual Fear Memory in Mice. Frontiers in Immunology, 2018, 9, 68.	2.2	14
33	GLUT12 Expression in Brain of Mouse Models of Alzheimer's Disease. Molecular Neurobiology, 2020, 57, 798-805.	1.9	14
34	Chronic Mild Stress Assay Leading to Early Onset and Propagation of Alzheimer's Disease Phenotype in Mouse Models. Methods in Molecular Biology, 2016, 1303, 241-246.	0.4	13
35	Identifying the Main Functional Pathways Associated with Cognitive Resilience to Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 9120.	1.8	13
36	Changes in cytoskeletal gene expression linked to MPTP-treatment in Mice. Neurobiology of Disease, 2005, 20, 666-672.	2.1	10

#	Article	IF	CITATIONS
37	Amyloid-Driven Tau Accumulation on Mitochondria Potentially Leads to Cognitive Deterioration in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 11950.	1.8	7
38	Advanced Assay Monitoring APP-Carboxyl-Terminal Fragments as Markers of APP Processing in Alzheimer Disease Mouse Models. Methods in Molecular Biology, 2016, 1303, 117-123.	0.4	5
39	Impact of Neurodegenerative Diseases on Drug Binding to Brain Tissues: From Animal Models to Human Samples. Neurotherapeutics, 2018, 15, 742-750.	2.1	5
40	Linking histone deacetylases and phosphodiesterase 5 in novel treatments for Alzheimer's disease. , 2020, , 213-226.		0