Feng Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9221018/publications.pdf

Version: 2024-02-01

687220 610775 26 655 13 24 citations h-index g-index papers 27 27 27 519 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Direct Reductive Quinolyl β-C–H Alkylation by Multispherical Cavity Carbon-Supported Cobalt Oxide Nanocatalysts. ACS Catalysis, 2017, 7, 4780-4785.	5.5	95
2	Efficient synthesis of quinoxalines from 2-nitroanilines and vicinal diols via a ruthenium-catalyzed hydrogen transfer strategy. Green Chemistry, 2015, 17, 279-284.	4.6	87
3	MOF-Derived Nanocobalt for Oxidative Functionalization of Cyclic Amines to Quinazolinones with 2-Aminoarylmethanols. ACS Catalysis, 2018, 8, 5869-5874.	5.5	71
4	An efficient ruthenium-catalyzed dehydrogenative synthesis of 2,4,6-triaryl-1,3,5-triazines from aryl methanols and amidines. Organic and Biomolecular Chemistry, 2014, 12, 2761-2768.	1.5	59
5	Convenient Synthesis of Quinolines from αâ€2â€Nitroaryl Alcohols and Alcohols via a Rutheniumâ€catalyzed Hydrogen Transfer Strategy. ChemCatChem, 2015, 7, 349-353.	1.8	45
6	MOF-Derived Subnanometer Cobalt Catalyst for Selective C–H Oxidative Sulfonylation of Tetrahydroquinoxalines with Sodium Sulfinates. ACS Catalysis, 2019, 9, 2718-2724.	5. 5	45
7	Hydrogen transfer-mediated selective dual C–H alkylations of 2-alkylquinolines by doped TiO2-supported nanocobalt oxides. Journal of Catalysis, 2019, 377, 449-454.	3.1	30
8	Base-catalyzed retro-Claisen condensation: a convenient esterification of alcohols via C–C bond cleavage of ketones to afford acylating sources. RSC Advances, 2014, 4, 29502-29508.	1.7	29
9	Mono/Dual Amination of Phenols with Amines in Water. Organic Letters, 2020, 22, 8291-8295.	2.4	25
10	Iridium/Acid Cocatalyzed Direct Access to Fused Indoles via Transfer Hydrogenative Annulation of Quinolines and 1,2-Diketones. Organic Letters, 2020, 22, 2308-2312.	2.4	19
11	Rutheniumâ€Catalyzed Nâ€Alkylation for the Synthesis of 2â€ <i>N</i> à€Pyridylmethyl Benzonitriles and an Exploration of Its Synthetic Utility. ChemCatChem, 2014, 6, 2993-2997.	1.8	17
12	Direct synthesis of novel quinoxaline derivatives <i>via</i> palladium-catalyzed reductive annulation of catechols and nitroarylamines. Chemical Communications, 2020, 56, 5997-6000.	2.2	17
13	Hydrogen-Transfer-Mediated N-Arylation of Naphthols Using Indolines as Hydrogen Donors. Journal of Organic Chemistry, 2020, 85, 508-514.	1.7	15
14	Ruthenium/Yb(OTf)3-cocatalyzed dehydrogenative synthesis of 14-substituted-14-H-dibenzo[a,j]xanthenes from \hat{l}^2 -naphthol and alcohols. RSC Advances, 2014, 4, 14744-14751.	1.7	14
15	Access to Thienopyridine and Thienoquinoline Derivatives via Site-Selective C–H Bond Functionalization and Annulation. Organic Letters, 2022, 24, 3167-3172.	2.4	13
16	Nitrogen-Doped Carbon Supported Nanocobalt Catalyst for Hydrogen-Transfer Dearomative Coupling of Quinolinium Salts and Tetrahydroquinolines. Organic Letters, 2022, 24, 5209-5213.	2.4	12
17	OMS-2 nanorod-supported cobalt catalyst for aerobic dehydrocyclization of vicinal diols and amidines: Access to functionalized imidazolones. Journal of Catalysis, 2021, 398, 192-197.	3.1	10
18	Copper-Catalyzed Selective 1,2-Difunctionalization of <i>N</i> -Heteroaromatics through Cascade C–N/Câ•C/Câ•O Bond Formation. Organic Letters, 2020, 22, 7976-7980.	2.4	9

#	Article	IF	CITATIONS
19	Direct synthesis of quinazolinones via the carbon-supported acid-catalyzed cascade reaction of isatoic anhydrides with amides and aldehydes. Tetrahedron Letters, 2021, 66, 152835.	0.7	9
20	Reusable Ruthenium Microspheres Derived from Chitin for Highly Efficient and Selective Hydroboration of Imines. ACS Sustainable Chemistry and Engineering, 2021, 9, 1568-1575.	3.2	8
21	Nitrogen-doped carbon supported nanocobalt for the synthesis of functionalized triazines via oxidative cleavage of biomass derived vicinal diols as carbon synthons. Journal of Catalysis, 2022, 408, 227-235.	3.1	8
22	Siteâ€Selective 1,4â€Difunctionalization of Nitrogen Heteroaromatics for Constructing Vinylidene Heterocycles. Advanced Synthesis and Catalysis, 2022, 364, 459-463.	2.1	8
23	Convenient synthesis of novel heteroatom-substituted quinolines via Friedl \tilde{A} n der annulation using phosphotungstic acid as a reusable catalyst. Monatshefte F \tilde{A} 1/4r Chemie, 2015, 146, 663-671.	0.9	5
24	Layered Double Hydroxides as Reusable Catalysts for Cyclocondensation of Amidines and Aminoalcohols: Access to Multi-functionalized Oxazolines. Journal of Organic Chemistry, 2022, 87, 1366-1376.	1.7	4
25	The Synthesis and Application of 2-Cyano and -Ester Containing Anilines: Selective Copper Catalyzed Reductive Amination, N-Benzylation and Cyclization Reactions. Synthesis, 0, , .	1.2	1
26	The crystal structure of 17-(bromoethynyl)-17-hydroxy-10, 13-dimethyl-1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3 <i>H</i> -cyclopenta[<i>a</i>)phenanthren-3-one, C ₂₁ H ₂₇ BrO ₂ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2022, .	0.1	0