
Cheng-Meng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9221003/publications.pdf Version: 2024-02-01

CHENC-MENC CHEN

#	Article	IF	CITATIONS
1	Powering Lithium–Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts. Nano Letters, 2016, 16, 519-527.	4.5	1,294
2	Selfâ€Assembled Free‧tanding Graphite Oxide Membrane. Advanced Materials, 2009, 21, 3007-3011.	11.1	868
3	Permselective Graphene Oxide Membrane for Highly Stable and Anti-Self-Discharge Lithium–Sulfur Batteries. ACS Nano, 2015, 9, 3002-3011.	7.3	723
4	Low-Temperature Exfoliated Graphenes: Vacuum-Promoted Exfoliation and Electrochemical Energy Storage. ACS Nano, 2009, 3, 3730-3736.	7.3	694
5	Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. Journal of Materials Chemistry A, 2019, 7, 16028-16045.	5.2	694
6	Electronic Structure Tuning in Ni ₃ FeN/r-GO Aerogel toward Bifunctional Electrocatalyst for Overall Water Splitting. ACS Nano, 2018, 12, 245-253.	7.3	462
7	Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. Journal of Materials Chemistry A, 2016, 4, 1637-1646.	5.2	396
8	Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors. Carbon, 2012, 50, 3572-3584.	5.4	362
9	Rational Integration of Polypropylene/Graphene Oxide/Nafion as Ternary‣ayered Separator to Retard the Shuttle of Polysulfides for Lithium–Sulfur Batteries. Small, 2016, 12, 381-389.	5.2	315
10	Porous TiO ₂ Nanotubes with Spatially Separated Platinum and CoO _x Cocatalysts Produced by Atomic Layer Deposition for Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2017, 56, 816-820.	7.2	293
11	Aromatic sulfide, sulfoxide, and sulfone mediated mesoporous carbon monolith for use in supercapacitor. Nano Energy, 2012, 1, 624-630.	8.2	288
12	Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon, 2012, 50, 659-667.	5.4	287
13	Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage. Journal of Materials Chemistry, 2012, 22, 14076.	6.7	280
14	Entrapment of sulfur in hierarchical porous graphene for lithium–sulfur batteries with high rate performance from â^'40 to 60°C. Nano Energy, 2013, 2, 314-321.	8.2	230
15	Thermally reduced graphene oxide films as flexible lateral heat spreaders. Journal of Materials Chemistry A, 2014, 2, 16563-16568.	5.2	229
16	Hard Carbon Anodes for Nextâ€Generation Liâ€ion Batteries: Review and Perspective. Advanced Energy Materials, 2021, 11, 2101650.	10.2	213
17	Macroporous â€ ⁻ bubble' graphene film via template-directed ordered-assembly for high rate supercapacitors. Chemical Communications, 2012, 48, 7149.	2.2	208
18	Highly stable supercapacitors with MOF-derived Co ₉ S ₈ /carbon electrodes for high rate electrochemical energy storage. Journal of Materials Chemistry A, 2017, 5, 12453-12461.	5.2	180

#	Article	IF	CITATIONS
19	Seaweed-Derived Route to Fe ₂ O ₃ Hollow Nanoparticles/N-Doped Graphene Aerogels with High Lithium Ion Storage Performance. ACS Applied Materials & Interfaces, 2016, 8, 7047-7053.	4.0	179
20	Hierarchical Graphene–Carbon Fiber Composite Paper as a Flexible Lateral Heat Spreader. Advanced Functional Materials, 2014, 24, 4222-4228.	7.8	178
21	Semi-Immobilized Molecular Electrocatalysts for High-Performance Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2021, 143, 19865-19872.	6.6	173
22	Proliferaâ€Greenâ€Tide as Sustainable Source for Carbonaceous Aerogels with Hierarchical Pore to Achieve Multiple Energy Storage. Advanced Functional Materials, 2016, 26, 8487-8495.	7.8	169
23	Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium–sulfur batteries. Nano Energy, 2015, 11, 746-755.	8.2	168
24	A novel asymmetric supercapacitor with an activated carbon cathode and a reduced graphene oxide–cobalt oxide nanocomposite anode. Journal of Power Sources, 2013, 242, 148-156.	4.0	163
25	Graphene Oxide: A Convenient Metal-Free Carbocatalyst for Facilitating Aerobic Oxidation of 5-Hydroxymethylfurfural into 2, 5-Diformylfuran. ACS Catalysis, 2015, 5, 5636-5646.	5.5	154
26	Scalable and Costâ€Effective Synthesis of Highly Efficient Fe ₂ Nâ€Based Oxygen Reduction Catalyst Derived from Seaweed Biomass. Small, 2016, 12, 1295-1301.	5.2	148
27	Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell. Biosensors and Bioelectronics, 2016, 81, 32-38.	5.3	148
28	Threeâ€Dimensional Hierarchically Ordered Porous Carbons with Partially Graphitic Nanostructures for Electrochemical Capacitive Energy Storage. ChemSusChem, 2012, 5, 563-571.	3.6	142
29	Reduced graphene oxide: a metal-free catalyst for aerobic oxidative desulfurization. Green Chemistry, 2017, 19, 1175-1181.	4.6	134
30	Advanced visible-light-driven photocatalyst BiOBr–TiO2–graphene composite with graphene as a nano-filler. Journal of Materials Chemistry A, 2014, 2, 4667.	5.2	128
31	Tuning the Shell Number of Multishelled Metal Oxide Hollow Fibers for Optimized Lithium-Ion Storage. ACS Nano, 2017, 11, 6186-6193.	7.3	127
32	Selfâ€Assembled 3D Grapheneâ€Based Aerogel with Co ₃ O ₄ Nanoparticles as Highâ€Performance Asymmetric Supercapacitor Electrode. ChemSusChem, 2015, 8, 2917-2926.	3.6	123
33	3D Sulfur and Nitrogen Codoped Carbon Nanofiber Aerogels with Optimized Electronic Structure and Enlarged Interlayer Spacing Boost Potassiumâ€ l on Storage. Small, 2019, 15, e1900816.	5.2	122
34	Graphene-supported Au–Pd bimetallic nanoparticles with excellent catalytic performance in selective oxidation of methanol to methyl formate. Chemical Communications, 2013, 49, 8250.	2.2	120
35	Layered NiCo2O4/reduced graphene oxide composite as an advanced electrode for supercapacitor. Energy Storage Materials, 2017, 8, 59-67.	9.5	118
36	Nanoscale engineering of nitrogen-doped carbon nanofiber aerogels for enhanced lithium ion storage. Journal of Materials Chemistry A, 2017, 5, 8247-8254.	5.2	114

#	Article	IF	CITATIONS
37	Highly Porous FeS/Carbon Fibers Derived from Fe-Carrageenan Biomass: High-capacity and Durable Anodes for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 17175-17182.	4.0	114
38	Dual-heteroatom-modified ordered mesoporous carbon: Hydrothermal functionalization, structure, and its electrochemical performance. Journal of Materials Chemistry, 2012, 22, 4963.	6.7	110
39	Suppressing Fe–Li Antisite Defects in LiFePO ₄ /Carbon Hybrid Microtube to Enhance the Lithium Ion Storage. Advanced Energy Materials, 2016, 6, 1601549.	10.2	109
40	Boosting hydrogen evolution <i>via</i> optimized hydrogen adsorption at the interface of CoP ₃ and Ni ₂ P. Journal of Materials Chemistry A, 2018, 6, 5560-5565.	5.2	107
41	Structural Evolution of Phosphorus Species on Graphene with a Stabilized Electrochemical Interface. ACS Applied Materials & Interfaces, 2019, 11, 11421-11430.	4.0	104
42	Subâ€1.5 nm Ultrathin CoP Nanosheet Aerogel: Efficient Electrocatalyst for Hydrogen Evolution Reaction at All pH Values. Small, 2018, 14, e1802824.	5.2	99
43	Graphene oxide for cellulose hydrolysis: how it works as a highly active catalyst?. Chemical Communications, 2014, 50, 3439.	2.2	96
44	Modification of Nitrate Ion Enables Stable Solid Electrolyte Interphase in Lithium Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	96
45	Oxygen Reduction Reaction on Graphene in an Electroâ€Fenton System: Inâ€Situ Generation of H ₂ O ₂ for the Oxidation of Organic Compounds. ChemSusChem, 2016, 9, 1194-1199.	3.6	93
46	Influence of phosphorus doping on surface chemistry and capacitive behaviors of porous carbon electrode. Electrochimica Acta, 2018, 266, 420-430.	2.6	93
47	Electrophoretic deposition and thermal annealing of a graphene oxide thin film on carbon fiber surfaces. Carbon, 2013, 52, 613-616.	5.4	91
48	Effect of pore structure and doping species on charge storage mechanisms in porous carbon-based supercapacitors. Materials Chemistry Frontiers, 2020, 4, 2610-2634.	3.2	91
49	Constructing Ni ₁₂ P ₅ /Ni ₂ P Heterostructures to Boost Interfacial Polarization for Enhanced Microwave Absorption Performance. ACS Applied Materials & Interfaces, 2020, 12, 52208-52220.	4.0	89
50	Graphene Oxide Catalyzed Dehydration of Fructose into 5â€Hydroxymethylfurfural with Isopropanol as Cosolvent. ChemCatChem, 2014, 6, 728-732.	1.8	88
51	Graphene Oxide: An Efficient Acid Catalyst for Alcoholysis and Esterification Reactions. ChemCatChem, 2014, 6, 3080-3083.	1.8	87
52	Reduced graphene oxide supported Ni-Ce catalysts for CO2 methanation: The support and ceria promotion effects. Journal of CO2 Utilization, 2019, 34, 676-687.	3.3	85
53	Construction of C-Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption. Carbon, 2020, 164, 59-68.	5.4	84
54	Nitrogen and Sulfur Vacancies in Carbon Shell to Tune Charge Distribution of Co ₆ Ni ₃ S ₈ Core and Boost Sodium Storage. Advanced Energy Materials, 2020, 10, 1904147.	10.2	80

#	Article	IF	CITATIONS
55	Direct synthesis of 2,5-diformylfuran from fructose with graphene oxide as a bifunctional and metal-free catalyst. Green Chemistry, 2016, 18, 2302-2307.	4.6	79
56	Resorcinol-formaldehyde based carbon aerogel: Preparation, structure and applications in energy storage devices. Microporous and Mesoporous Materials, 2019, 279, 293-315.	2.2	78
57	Ultrafine FeSe nanoparticles embedded into 3D carbon nanofiber aerogels with FeSe/Carbon interface for efficient and long-life sodium storage. Carbon, 2019, 143, 106-115.	5.4	78
58	A sulfur host based on cobalt–graphitic carbon nanocages for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 24901-24908.	5.2	75
59	Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity. Carbon, 2021, 178, 243-255.	5.4	73
60	Structure evolution of oxygen removal from porous carbon for optimizing supercapacitor performance. Journal of Energy Chemistry, 2020, 51, 396-404.	7.1	71
61	Redox mediator assists electron transfer in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes. EcoMat, 2021, 3, e12066.	6.8	69
62	Titanium–oxo cluster reinforced gel polymer electrolyte enabling lithium–sulfur batteries with high gravimetric energy densities. Energy and Environmental Science, 2021, 14, 975-985.	15.6	69
63	xmins:mml= http://www.w3.org/1998/Math/MathML_altimg= si0003.gir overflow="scroll"> <mml:mrow><mml:mo stretchy="false">{<mml:mi>01</mml:mi><mml:mover accent="true"><mml:mi mathvariant="bold">1<mml:mo>Â⁻</mml:mo></mml:mi </mml:mover><mml:mover< td=""><td>8.2</td><td>68</td></mml:mover<></mml:mo </mml:mrow>	8.2	68
64	Nitrogen-doped hierarchical porous carbon derived from block copolymer for supercapacitor. Energy Storage Materials, 2016, 3, 140-148.	9.5	67
65	Controllable synthesis of CoN ₃ catalysts derived from Co/Zn-ZIF-67 for electrocatalytic oxygen reduction in acidic electrolytes. Journal of Materials Chemistry A, 2019, 7, 21884-21891.	5.2	67
66	Porous NiCo2O4 nanowires supported on carbon cloth for flexible asymmetric supercapacitor with high energy density. Journal of Energy Chemistry, 2018, 27, 195-202.	7.1	66
67	A new approach to fabricate graphene electro-conductive networks on natural fibers by ultraviolet curing method. Synthetic Metals, 2014, 193, 41-47.	2.1	65
68	Bamboo-like N-doped carbon tubes encapsulated CoNi nanospheres towards efficient and anticorrosive microwave absorbents. Carbon, 2021, 171, 142-153.	5.4	64
69	Hollow carbon microtubes from kapok fiber: structural evolution and energy storage performance. Sustainable Energy and Fuels, 2018, 2, 455-465.	2.5	63
70	3D graphene/ carbon nanotubes/ polydimethylsiloxane composites as high-performance electromagnetic shielding material in X-band. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105712.	3.8	63
71	Boosting Sodium-Ion Storage by Encapsulating NiS (CoS) Hollow Nanoparticles into Carbonaceous Fibers. ACS Applied Materials & Interfaces, 2018, 10, 40531-40539.	4.0	62
72	Dual-functional graphene/carbon nanotubes thick film: Bidirectional thermal dissipation and electromagnetic shielding. Carbon, 2021, 171, 329-340.	5.4	60

#	Article	IF	CITATIONS
73	High photoelectrocatalytic performance of a MoS2–SiC hybrid structure for hydrogen evolution reaction. Journal of Materials Chemistry A, 2013, 1, 4657.	5.2	58
74	Oxygenophilic ionic liquids promote the oxygen reduction reaction in Pt-free carbon electrocatalysts. Materials Horizons, 2017, 4, 895-899.	6.4	56
75	Free-standing, anti-corrosion, super flexible graphene oxide/silver nanowire thin films for ultra-wideband electromagnetic interference shielding. Journal of Materials Chemistry A, 2021, 9, 1180-1191.	5.2	56
76	Crumpled reduced graphene oxide by flame-induced reduction of graphite oxide for supercapacitive energy storage. Journal of Materials Chemistry A, 2014, 2, 5730-5737.	5.2	55
77	Layered NiO/reduced graphene oxide composites by heterogeneous assembly with enhanced performance as high-performance asymmetric supercapacitor cathode. RSC Advances, 2016, 6, 46548-46557.	1.7	54
78	Experimental investigation of the heat transfer performance of an oscillating heat pipe with graphene nanofluids. Powder Technology, 2018, 332, 371-380.	2.1	54
79	Graphene oxide: an effective acid catalyst for the synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene. Catalysis Science and Technology, 2016, 6, 993-997.	2.1	53
80	Air cathode of zinc–air batteries: a highly efficient and durable aerogel catalyst for oxygen reduction. Nanoscale, 2019, 11, 826-832.	2.8	53
81	Dual-functional 3D multi-wall carbon nanotubes/graphene/silicone rubber elastomer: Thermal management and electromagnetic interference shielding. Carbon, 2021, 183, 216-224.	5.4	53
82	Intercalation structure of vanadium nitride nanoparticles growing on graphene surface toward high negative active material for supercapacitor utilization. Journal of Alloys and Compounds, 2019, 781, 1054-1058.	2.8	52
83	Atomic Design and Fine-Tuning of Subnanometric Pt Catalysts to Tame Hydrogen Generation. ACS Catalysis, 2021, 11, 4146-4156.	5.5	52
84	Facile synthesis of self-assembled ultrathin α-FeOOH nanorod/graphene oxide composites for supercapacitors. Journal of Colloid and Interface Science, 2017, 504, 593-602.	5.0	51
85	Easy one-step synthesis of N-doped graphene for supercapacitors. Energy Storage Materials, 2016, 2, 69-75.	9.5	50
86	Nanoconfinement of red phosphorus nanoparticles in seaweed-derived hierarchical porous carbonaceous fibers for enhanced lithium ion storage. Chemical Engineering Journal, 2018, 345, 604-610.	6.6	50
87	Fluidizedâ€bed CVD of unstacked doubleâ€ŀayer templated graphene and its application in supercapacitors. AICHE Journal, 2015, 61, 747-755.	1.8	48
88	Probing the intrinsic active sites of modified graphene oxide for aerobic benzylic alcohol oxidation. Applied Catalysis B: Environmental, 2017, 211, 89-97.	10.8	48
89	Turning gelidium amansii residue into nitrogen-doped carbon nanofiber aerogel for enhanced multiple energy storage. Carbon, 2018, 137, 31-40.	5.4	48
90	From Starch to Carbon Materials: Insight into the Cross-Linking Reaction and Its Influence on the Carbonization Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 14796-14804.	3.2	48

#	Article	IF	CITATIONS
91	Phosphorus-modified porous carbon aerogel microspheres as high volumetric energy density electrode for supercapacitor. Electrochimica Acta, 2019, 318, 151-160.	2.6	48
92	3D Thermally Cross‣inked Graphene Aerogel–Enhanced Silicone Rubber Elastomer as Thermal Interface Material. Advanced Materials Interfaces, 2019, 6, 1900147.	1.9	47
93	βâ€Ni(OH) ₂ Nanosheet Arrays Grown on Biomassâ€Derived Hollow Carbon Microtubes for Highâ€Performance Asymmetric Supercapacitors. ChemElectroChem, 2018, 5, 1279-1287.	1.7	46
94	Aerobic selective oxidation of 5-hydroxymethyl-furfural over nitrogen-doped graphene materials with 2,2,6,6-tetramethylpiperidin-oxyl as co-catalyst. Catalysis Science and Technology, 2016, 6, 2377-2386.	2.1	45
95	Toward Aerogel Electrodes of Superior Rate Performance in Supercapacitors through Engineered Hollow Nanoparticles of NiCo ₂ O ₄ . Advanced Science, 2017, 4, 1700345.	5.6	45
96	Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low-temperature hydrogen reduction. Energy Storage Materials, 2022, 51, 620-629.	9.5	45
97	Synthesis of MoSe ₂ /Reduced graphene oxide composites with improved tribological properties for oilâ€based additives. Crystal Research and Technology, 2014, 49, 204-211.	0.6	43
98	Green synthesis of reduced graphene oxide paper using Zn powder for supercapacitors. Materials Letters, 2015, 157, 273-276.	1.3	41
99	Fullâ€Range Redox Mediation on Sulfur Redox Kinetics for Highâ€Performance Lithiumâ€Sulfur Batteries. Batteries and Supercaps, 2022, 5, .	2.4	41
100	Chemically derived graphene–metal oxide hybrids as electrodes for electrochemical energy storage: pre-graphenization or post-graphenization?. Journal of Materials Chemistry, 2012, 22, 13947.	6.7	40
101	Selfâ€standing hard carbon anode derived from hyperâ€linked nanocellulose with high cycling stability for lithiumâ€ion batteries. EcoMat, 2021, 3, e12091.	6.8	39
102	Insights into the thermochemical evolution of maleic anhydride-initiated esterified starch to construct hard carbon microspheres for lithium-ion batteries. Journal of Energy Chemistry, 2022, 66, 448-458.	7.1	38
103	Alginate/r-GO assisted synthesis of ultrathin LiFePO4 nanosheets with oriented (0 1 0) facet and ultralow antisite defect. Chemical Engineering Journal, 2018, 351, 340-347.	6.6	37
104	Reduction of graphene oxide in Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 18360-18364.	5.2	36
105	Three-dimensional paper-like graphene framework with highly orientated laminar structure as binder-free supercapacitor electrode. Journal of Energy Chemistry, 2016, 25, 49-54.	7.1	36
106	Architecture of Co-layered double hydroxide nanocages/graphene composite electrode with high electrochemical performance for supercapacitor. Journal of Energy Chemistry, 2018, 27, 507-512.	7.1	35
107	New Insights into the Mechanism of LiDFBOP for Improving the Low-Temperature Performance <i>via</i> the Rational Design of an Interphase on a Graphite Anode. ACS Applied Materials & Interfaces, 2021, 13, 40042-40052.	4.0	35

108 Carbocatalyst in biorefinery: Selective etherification of 5-hydroxymethylfurfural to

#	Article	IF	CITATIONS
109	Nitrogen-functionalized reduced graphene oxide as carbocatalysts with enhanced activity for polyaromatic hydrocarbon hydrogenation. Catalysis Science and Technology, 2017, 7, 1217-1226.	2.1	34
110	Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor. Electrochimica Acta, 2017, 247, 1060-1071.	2.6	34
111	New insights into Li2S2/Li2S adsorption on the graphene bearing single vacancy: A DFT study. Applied Surface Science, 2020, 503, 144446.	3.1	34
112	Nanoscale engineering MoP/Fe2P/RGO toward efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 13939-13945.	3.8	33
113	A facile method for the synthesis of graphene-like 2D metal oxides and their excellent catalytic application in the hydrogenation of nitroarenes. Journal of Materials Chemistry A, 2018, 6, 9948-9961.	5.2	33
114	Graphene enhanced low-density polyethylene by pretreatment and melt compounding. RSC Advances, 2016, 6, 101492-101500.	1.7	32
115	Porous CoP nanostructure electrocatalyst derived from DUT-58 for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 13904-13910.	3.8	32
116	Filling the Gaps between Graphene Oxide: A General Strategy toward Nanolayered Oxides. Advanced Functional Materials, 2015, 25, 5683-5690.	7.8	31
117	High Yield Silicon Carbide Whiskers from Rice Husk Ash and Graphene: Growth Method and Thermodynamics. ACS Sustainable Chemistry and Engineering, 2019, 7, 19027-19033.	3.2	31
118	Genuine Active Species Generated from Fe ₃ N Nanotube by Synergistic CoNi Doping for Boosted Oxygen Evolution Catalysis. Small, 2020, 16, e2003824.	5.2	31
119	Ultra-high temperature graphitization of three-dimensional large-sized graphene aerogel for the encapsulation of phase change materials. Composites Part A: Applied Science and Manufacturing, 2021, 145, 106391.	3.8	31
120	The nanostructure preservation of 3D porous graphene: New insights into the graphitization and surface chemistry of non-stacked double-layer templated graphene after high-temperature treatment. Carbon, 2016, 103, 36-44.	5.4	30
121	Removal of azo dye from aqueous solution by a low-cost activated carbon prepared from coal: adsorption kinetics, isotherms study, and DFT simulation. Environmental Science and Pollution Research, 2021, 28, 10234-10247.	2.7	30
122	Vanadium-oxo immobilized onto Schiff base modified graphene oxide for efficient catalytic oxidation of 5-hydroxymethylfurfural and furfural into maleic anhydride. RSC Advances, 2016, 6, 101277-101282.	1.7	28
123	A high energy density asymmetric supercapacitor based on a CoNi-layered double hydroxide and activated carbon. New Carbon Materials, 2016, 31, 37-45.	2.9	28
124	Tuning the physico-chemical properties of BiOBr <i>via</i> solvent adjustment: towards an efficient photocatalyst for water treatment. CrystEngComm, 2019, 21, 1750-1757.	1.3	26
125	Preparation of SiC whiskers using graphene and rice husk ash and its photocatalytic property. Journal of Alloys and Compounds, 2020, 833, 155072.	2.8	26
126	2D Layered αâ€Fe ₂ O ₃ /rGO Flexible Electrode Prepared through Colloidal Electrostatic Selfâ€Assembly. ChemElectroChem, 2017, 4, 1990-1996.	1.7	25

#	Article	IF	CITATIONS
127	Self-standing graphitized hybrid Nanocarbon electrodes towards high-frequency supercapacitors. Carbon, 2021, 185, 630-640.	5.4	25
128	Seaweed-derived synthesis of Na3.12Fe2.44(P2O7)2/r-GO aerogels as air stable cathode materials for sodium-ion batteries. Chemical Engineering Journal, 2019, 365, 325-333.	6.6	24
129	SiC whiskers nucleated on rGO and its potential role in thermal conductivity and electronic insulation. Chemical Engineering Journal, 2021, 423, 130181.	6.6	24
130	Molecular-scale controllable conversion of biopolymers into hard carbons towards lithium and sodium ion batteries: A review. Journal of Energy Chemistry, 2022, 72, 554-569.	7.1	24
131	Creation of Ge–Nx–Cy Configures in Carbon Nanotubes: Origin of Enhanced Electrocatalytic Performance for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 10383-10391.	4.0	23
132	Electromagnetic interference shielding material for super-broadband: multi-walled carbon nanotube/silver nanowire film with an ultrathin sandwich structure. Journal of Materials Chemistry A, 2021, 9, 25999-26009.	5.2	23
133	Microstructure and mechanical properties of in situ TiB2/7055 composites synthesized by direct magnetochemistry melt reaction. Transactions of Nonferrous Metals Society of China, 2013, 23, 2502-2508.	1.7	22
134	Boosting the Specific Surface Area of Hierarchical Porous Carbon Aerogel through the Multiple Roles of the Catalyst for Highâ€Performance Supercapacitors. ChemElectroChem, 2017, 4, 3119-3125.	1.7	22
135	Uncovering electrocatalytic conversion mechanisms from Li2S2 to Li2S: Generalization of computational hydrogen electrode. Energy Storage Materials, 2022, 47, 327-335.	9.5	22
136	Accessible 3D Integrative Paper Electrode Shapes: Allâ€Carbon Dualâ€Ion Batteries with Optimum Packaging Performances. ChemElectroChem, 2017, 4, 3238-3243.	1.7	21
137	Generating lithium vacancies through delithiation of Li(NixCoyMnz)O2 towards bifunctional electrocatalysts for rechargeable zinc-air batteries. Energy Storage Materials, 2018, 15, 202-208.	9.5	21
138	Theoretical Study on the Quantum Capacitance Origin of Graphene Cathodes in Lithium Ion Capacitors. Catalysts, 2018, 8, 444.	1.6	21
139	5-Hydroxymethylfurfural oxidation to Maleic acid by O2 over graphene oxide supported vanadium: Solvent effects and reaction mechanism. Chemical Engineering Journal, 2020, 388, 124187.	6.6	21
140	Micro-structure evolution and control of lithium-ion battery electrode laminate. Journal of Energy Storage, 2017, 14, 82-93.	3.9	20
141	Preparation of nitrogen-doped graphene/activated carbon composite papers to enhance energy storage in supercapacitors. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	20
142	One-pot ball-milling preparation of graphene/carbon black aqueous inks for highly conductive and flexible printed electronics. Science China Materials, 2020, 63, 392-402.	3.5	20
143	Highly active Au–Pd nanoparticles supported on three-dimensional graphene–carbon nanotube hybrid for selective oxidation of methanol to methyl formate. RSC Advances, 2015, 5, 44835-44839.	1.7	19
144	Sandwich electrode designed for high performance lithium-ion battery. Nanoscale, 2016, 8, 9511-9516.	2.8	19

#	Article	IF	CITATIONS
145	A method for producing conductive graphene biopolymer nanofibrous fabrics by exploitation of an ionic liquid dispersant in electrospinning. Carbon, 2018, 140, 148-156.	5.4	19
146	In-situ conversion of Ni2P/rCO from heterogeneous self-assembled NiO/rGO precursor with boosted pseudocapacitive performance. Chinese Chemical Letters, 2020, 31, 1392-1397.	4.8	19
147	Decorated resol derived mesoporous carbon: highly ordered microstructure, rich boron incorporation, and excellent electrochemical capacitance. RSC Advances, 2013, 3, 3578.	1.7	18
148	Mechanistic insight into high-efficiency sodium storage based on N/O/P-functionalized ultrathin carbon nanosheet. Journal of Power Sources, 2019, 442, 227184.	4.0	18
149	Fe-alginate biomass-derived FeS/3D interconnected carbon nanofiber aerogels as anodes for high performance sodium-ion batteries. Journal of Alloys and Compounds, 2019, 795, 54-59.	2.8	18
150	Cu ₂ CoGeS ₄ nanocrystals for high performance aqueous polysulfide/iodide redox flow batteries: enhanced selectively towards the electrocatalytic conversion of polysulfides. Sustainable Energy and Fuels, 2020, 4, 2892-2899.	2.5	18
151	Tuning the surface structure of supported PtNi _x bimetallic electrocatalysts for the methanol electro-oxidation reaction. Chemical Communications, 2016, 52, 3927-3930.	2.2	17
152	Structural evolution of carbon aerogel microspheres by thermal treatment for high–power supercapacitors. Journal of Energy Chemistry, 2018, 27, 439-446.	7.1	17
153	Selenite capture by MIL-101 (Fe) through Fe O Se bonds at free coordination Fe sites. Journal of Hazardous Materials, 2022, 424, 127715.	6.5	17
154	CoP/RGO-Pd Hybrids with Heterointerfaces as Highly Active Catalysts for Ethanol Electrooxidation. ACS Applied Materials & Interfaces, 2020, 12, 28903-28914.	4.0	16
155	From two-dimensional to one-dimensional structures: SiC nano-whiskers derived from graphene via a catalyst-free carbothermal reaction. RSC Advances, 2015, 5, 5946-5950.	1.7	15
156	A self-assembly strategy for fabricating highly stable silicon/reduced graphene oxide anodes for lithium-ion batteries. New Journal of Chemistry, 2016, 40, 8961-8968.	1.4	15
157	Controllable decoration of palladium sub-nanoclusters on reduced graphene oxide with superior catalytic performance in selective oxidation of alcohols. Catalysis Science and Technology, 2017, 7, 5650-5661.	2.1	15
158	Small Particles of Chemically-Reduced Graphene with Improved Electrochemical Capacity. Journal of Physical Chemistry C, 2013, 117, 15496-15504.	1.5	14
159	Regulating pore structure of carbon aerogels by graphene oxide as â€~shape-directing' agent. Microporous and Mesoporous Materials, 2017, 240, 145-148.	2.2	14
160	Synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene over graphene oxide: Probing the active species and relating the catalyst structure to performance. Applied Catalysis A: General, 2019, 570, 15-22.	2.2	14
161	Rheological Behavior of High Concentrated Dispersions of Graphite Oxide. Soft Materials, 2015, 13, 167-175.	0.8	13
162	DUTâ€58 (Co) Derived Synthesis of Co Clusters as Efficient Oxygen Reduction Electrocatalyst for Zinc–Air Battery. Global Challenges, 2018, 2, 1700086.	1.8	13

#	Article	IF	CITATIONS
163	Crystalline-amorphous Ni3P@Nix(POy)z core–shell heterostructures as corrosion-resistant and high-efficiency microwave absorbents. Applied Surface Science, 2021, 542, 148608.	3.1	13
164	A review of three-dimensional graphene networks for thermal management and electromagnetic protection. New Carbon Materials, 2021, 36, 851-868.	2.9	13
165	Influence of co-solvent hydroxyl group number on properties of water-based conductive carbon pastes. Particuology, 2017, 33, 35-41.	2.0	12
166	Towards optimized Li-ion storage performance: Insight on the oxygen species evolution of hard carbon by H2 reduction. Electrochimica Acta, 2020, 337, 135736.	2.6	12
167	Combined DFT and experiment: Stabilizing the electrochemical interfaces via boron Lewis acids. Journal of Energy Chemistry, 2021, 59, 100-107.	7.1	12
168	Effect of annealing temperature on the mechanical properties of flexible graphene films. New Carbon Materials, 2017, 32, 221-226.	2.9	11
169	Self-templating synthesis nitrogen and sulfur co-doped hierarchical porous carbons derived from crab shells as a high-performance metal-free oxygen electroreduction catalyst. Materials Today Energy, 2018, 10, 388-395.	2.5	11
170	Selective oxidative esterification of alcohols over Au-Pd/graphene. Molecular Catalysis, 2020, 484, 110687.	1.0	10
171	A one-step graphene induction strategy enables in-situ controllable growth of silver nanowires for electromagnetic interference shielding. Carbon, 2021, 183, 809-819.	5.4	10
172	A DFT study of the effect of stacking on the quantum capacitance of bilayer graphene materials. New Carbon Materials, 2021, 36, 1062-1070.	2.9	10
173	A novel supported Cu catalyst with highly dispersed copper nanoparticles and its remarkable catalytic performance in methanol decomposition. RSC Advances, 2014, 4, 52008-52011.	1.7	9
174	Free standing graphene/SiC films by in-situ carbothermal reaction as thermal shielding materials. Materials and Design, 2016, 109, 227-232.	3.3	9
175	Graphene oxide aerogels constructed using large or small graphene oxide with different electrical, mechanical and adsorbent properties. RSC Advances, 2016, 6, 9851-9856.	1.7	9
176	Correlation between Microstructure Evolution of a Wellâ€Defined Cubic Palladium Catalyst and Selectivity during Acetylene Hydrogenation. ChemCatChem, 2017, 9, 3435-3439.	1.8	9
177	Ultrathin nickel phosphide nanosheet aerogel electrocatalysts derived from Ni-alginate for hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 817, 152727.	2.8	9
178	A novel hafnium–graphite oxide catalyst for the Meerwein–Ponndorf–Verley reaction and the activation effect of the solvent. RSC Advances, 2020, 10, 9985-9995.	1.7	9
179	Modification of Nitrate Ion Enables Stable Solid Electrolyte Interphase in Lithium Metal Batteries. Angewandte Chemie, 2022, 134, .	1.6	9
180	High-Voltage Redox Mediator of an Organic Electrolyte for Supercapacitors by Lewis Base Electrocatalysis. ACS Applied Materials & Interfaces, 2022, 14, 24497-24508.	4.0	9

#	Article	IF	CITATIONS
181	Critical Role of Surface Defects in the Controllable Deposition of Li ₂ S on Graphene: From Molecule to Crystallite. ACS Applied Materials & Interfaces, 2020, 12, 53435-53445.	4.0	8
182	The effect of removing the native passivation film on the electrochemical performance of lithium metal electrodes. Journal of Power Sources, 2022, 520, 230817.	4.0	8
183	Highly graphitic porous carbon prepared <i>via</i> K ₂ FeO ₄ -assisted KOH activation for supercapacitors. New Journal of Chemistry, 2022, 46, 14338-14345.	1.4	8
184	Tribological properties of Cu-based composites with S-doped NbSe2. Rare Metals, 2015, 34, 407-412.	3.6	7
185	Graphene/Carbon Black Coâ€modified Separator as Polysulfides Trapper for Liâ€5 Batteries. ChemistrySelect, 2019, 4, 6026-6034.	0.7	7
186	Firstâ€Principles Studies of Li Nucleation on Double‣ayered Defective Graphene. ChemElectroChem, 2019, 6, 810-817.	1.7	7
187	Activated Carbon Based Supercapacitors with a Reduced Graphene Oxide Additive: Preparation and Properties. Journal of Nanoscience and Nanotechnology, 2020, 20, 4073-4083.	0.9	7
188	The fine control of porous pompon-like Mg-incorporated α-Ni(OH) ₂ for enhanced supercapacities. Functional Materials Letters, 2016, 09, 1650057.	0.7	6
189	Synthesis of mesoporous carbon aerogels based on metal-containing ionic liquid and its application for electrochemical capacitors. Journal of Solid State Electrochemistry, 2016, 20, 1813-1817.	1.2	6
190	Synthesis of 3D N, S Dualâ€Doped Porous Carbons with Ultrahigh Surface Areas for Highly Efficient Oxygen Reduction Reactions. ChemElectroChem, 2018, 5, 3506-3513.	1.7	6
191	Biochar aerogel decorated with thiophene S manipulated 5-membered rings boosts nitrogen fixation. Applied Catalysis B: Environmental, 2022, 313, 121425.	10.8	5
192	Enhancing Oxygen Reduction Activity by Exposing (111) Facets of CoFe ₂ O ₄ Octahedron on Graphene. ChemistrySelect, 2017, 2, 9878-9881.	0.7	4
193	Electrochemical stability of graphene cathode for highâ€voltage lithium ion capacitors. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 407-414.	0.8	3
194	Computational Insights into the Interaction between Li 2 S/Li 2 S 2 and Heteroatomâ€Đoped Graphene Materials. ChemistrySelect, 2019, 4, 12612-12621.	0.7	3
195	Investigation on Solutal Marangoni Convection around a Bubble under Different Gravities. Microgravity Science and Technology, 2020, 32, 857-871.	0.7	3
196	Chemical co-activated modified small mesoporous carbon derived from nature anthracite toward enhanced supercapacitive behaviors. Journal of Electroanalytical Chemistry, 2022, 917, 116417.	1.9	3
197	Literature Review and Research Background. Springer Theses, 2016, , 1-49.	0.0	2
198	Effect of Aging Time on the Characteristics and Photocatalysis of Zn2+-Doped CTAB@BiOCl. Nano, 2017, 12, 1750106.	0.5	2

#	Article	IF	CITATIONS
199	The Inhibition Mechanism of Lithium Dendrite on Nitrogen-Doped Defective Graphite: The First Principles Studies. Journal of the Electrochemical Society, 2019, 166, A1603-A1610.	1.3	2
200	Structural Evolution of the Thermally Reduced Graphene NanosheetsDuring Annealing. Springer Theses, 2016, , 51-71.	0.0	1
201	SnO2@Graphene Composite Electrodes for the Application in Electrochemical Energy Storage. Springer Theses, 2016, , 123-141.	0.0	1
202	Hierarchical Amination of Graphene for Electrochemical Energy Storage. Springer Theses, 2016, , 73-96.	0.0	0
203	Free-Standing Graphene Film with High Conductivity by Thermal Reduction of Self-assembled Graphene Oxide Film. Springer Theses, 2016, , 97-110.	0.0	0