Li-Qiang Mai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9220889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanostructured Metal Oxides and Sulfides for Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1601759.	21.0	1,197
2	Water‣ubricated Intercalation in V ₂ O ₅ ·nH ₂ O for Highâ€Capacity and Highâ€Rate Aqueous Rechargeable Zinc Batteries. Advanced Materials, 2018, 30, 1703725.	21.0	1,084
3	Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nature Communications, 2011, 2, 381.	12.8	1,040
4	Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nature Communications, 2015, 6, 6929.	12.8	969
5	Layered VS ₂ Nanosheetâ€Based Aqueous Zn Ion Battery Cathode. Advanced Energy Materials, 2017, 7, 1601920.	19.5	961
6	General Oriented Formation of Carbon Nanotubes from Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 8212-8221.	13.7	777
7	Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chemical Society Reviews, 2019, 48, 285-309.	38.1	685
8	Manipulating Adsorption–Insertion Mechanisms in Nanostructured Carbon Materials for Highâ€Efficiency Sodium Ion Storage. Advanced Energy Materials, 2017, 7, 1700403.	19.5	662
9	Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for Highâ€Performance Zincâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1702463.	19.5	650
10	Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nature Communications, 2013, 4, 2923.	12.8	623
11	Nanowire Electrodes for Electrochemical Energy Storage Devices. Chemical Reviews, 2014, 114, 11828-11862.	47.7	617
12	Porous Oneâ€Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage. Advanced Materials, 2017, 29, 1602300.	21.0	615
13	Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nature Communications, 2017, 8, 14264.	12.8	588
14	Highly Durable Na ₂ V ₆ O ₁₆ ·1.63H ₂ O Nanowire Cathode for Aqueous Zinc-Ion Battery. Nano Letters, 2018, 18, 1758-1763.	9.1	568
15	Graphene Scroll oated αâ€MnO ₂ Nanowires as Highâ€Performance Cathode Materials for Aqueous Znâ€ion Battery. Small, 2018, 14, e1703850.	10.0	563
16	Electrospun Ultralong Hierarchical Vanadium Oxide Nanowires with High Performance for Lithium Ion Batteries. Nano Letters, 2010, 10, 4750-4755.	9.1	549
17	Lithiated MoO ₃ Nanobelts with Greatly Improved Performance for Lithium Batteries. Advanced Materials, 2007, 19, 3712-3716.	21.0	545
18	Intricate Hollow Structures: Controlled Synthesis and Applications in Energy Storage and Conversion. Advanced Materials, 2017, 29, 1602914.	21.0	523

#	Article	IF	CITATIONS
19	Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode. Advanced Materials Interfaces, 2018, 5, 1800848.	3.7	476
20	Effect of Carbon Matrix Dimensions on the Electrochemical Properties of Na ₃ V ₂ (PO ₄) ₃ Nanograins for Highâ€Performance Symmetric Sodiumâ€lon Batteries. Advanced Materials, 2014, 26, 3545-3553.	21.0	473
21	Highâ€Performance Aqueous Zinc–Ion Battery Based on Layered H ₂ V ₃ O ₈ Nanowire Cathode. Small, 2017, 13, 1702551.	10.0	455
22	Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy, 2019, 62, 275-281.	16.0	455
23	Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nature Nanotechnology, 2019, 14, 594-601.	31.5	451
24	Interfaces in Solid-State Lithium Batteries. Joule, 2018, 2, 1991-2015.	24.0	444
25	Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1701415.	19.5	436
26	Zn/V ₂ O ₅ Aqueous Hybrid-Ion Battery with High Voltage Platform and Long Cycle Life. ACS Applied Materials & Interfaces, 2017, 9, 42717-42722.	8.0	401
27	General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nature Communications, 2015, 6, 7402.	12.8	370
28	Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries. Nano Letters, 2017, 17, 544-550.	9.1	356
29	Manganese Oxide/Carbon Yolk–Shell Nanorod Anodes for High Capacity Lithium Batteries. Nano Letters, 2015, 15, 738-744.	9.1	345
30	SnO ₂ Quantum Dots@Graphene Oxide as a Highâ€Rate and Longâ€Life Anode Material for Lithiumâ€Ion Batteries. Small, 2016, 12, 588-594.	10.0	338
31	Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nature Communications, 2018, 9, 3729.	12.8	331
32	Advances in metal–organic framework coatings: versatile synthesis and broad applications. Chemical Society Reviews, 2020, 49, 3142-3186.	38.1	327
33	3D self-supported nanopine forest-like Co3O4@CoMoO4 core–shell architectures for high-energy solid state supercapacitors. Nano Energy, 2016, 19, 222-233.	16.0	321
34	Hierarchical mesoporous perovskite La ₀ _{.5} Sr _{0.5} CoO _{2.91} nanowires with ultrahigh capacity for Li-air batteries. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19569-19574.	7.1	315
35	A New View of Supercapacitors: Integrated Supercapacitors. Advanced Energy Materials, 2019, 9, 1901081.	19.5	315
36	Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy, 2017, 35, 396-404.	16.0	313

#	Article	IF	CITATIONS
37	Multicomponent Hierarchical Cuâ€Đoped NiCo‣DH/CuO Double Arrays for Ultralong‣ife Hybrid Fiber Supercapacitor. Advanced Functional Materials, 2019, 29, 1809004.	14.9	313
38	Nanowires for Electrochemical Energy Storage. Chemical Reviews, 2019, 119, 11042-11109.	47.7	309
39	MoB/g ₃ N ₄ Interface Materials as a Schottky Catalyst to Boost Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 496-500.	13.8	308
40	The Marriage of the FeN ₄ Moiety and MXene Boosts Oxygen Reduction Catalysis: Fe 3d Electron Delocalization Matters. Advanced Materials, 2018, 30, e1803220.	21.0	289
41	Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives. Tribology International, 2016, 103, 540-554.	5.9	287
42	Porous Nickel–Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 19386-19392.	8.0	284
43	Layerâ€byâ€Layer Na ₃ V ₂ (PO ₄) ₃ Embedded in Reduced Graphene Oxide as Superior Rate and Ultralongâ€Life Sodiumâ€Ion Battery Cathode. Advanced Energy Materials, 2016, 6, 1600389.	19.5	282
44	Materials Design for High‣afety Sodiumâ€ion Battery. Advanced Energy Materials, 2021, 11, 2000974.	19.5	282
45	Interface Engineering for Highâ€Performance Topâ€Gated MoS ₂ Fieldâ€Effect Transistors. Advanced Materials, 2014, 26, 6255-6261.	21.0	272
46	Vanadiumâ€Based Nanomaterials: A Promising Family for Emerging Metalâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1904398.	14.9	262
47	Amorphous Vanadium Oxide Matrixes Supporting Hierarchical Porous Fe ₃ O ₄ /Graphene Nanowires as a High-Rate Lithium Storage Anode. Nano Letters, 2014, 14, 6250-6256.	9.1	257
48	Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy and Environmental Science, 2021, 14, 3796-3839.	30.8	257
49	Low-Crystalline Bimetallic Metal–Organic Framework Electrocatalysts with Rich Active Sites for Oxygen Evolution. ACS Energy Letters, 2019, 4, 285-292.	17.4	255
50	A 3D Nitrogenâ€Doped Graphene/TiN Nanowires Composite as a Strong Polysulfide Anchor for Lithium–Sulfur Batteries with Enhanced Rate Performance and High Areal Capacity. Advanced Materials, 2018, 30, e1804089.	21.0	251
51	Structural and chemical synergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy, 2017, 35, 281-289.	16.0	247
52	VO ₂ Nanowires Assembled into Hollow Microspheres for High-Rate and Long-Life Lithium Batteries. Nano Letters, 2014, 14, 2873-2878.	9.1	244
53	Co onstruction of Sulfur Vacancies and Heterojunctions in Tungsten Disulfide to Induce Fast Electronic/Ionic Diffusion Kinetics for Sodiumâ€ion Batteries. Advanced Materials, 2020, 32, e2005802.	21.0	244
54	Copper–Nickel Nitride Nanosheets as Efficient Bifunctional Catalysts for Hydrazineâ€Assisted Electrolytic Hydrogen Production. Advanced Energy Materials, 2019, 9, 1900390.	19.5	243

#	Article	IF	CITATIONS
55	NiSe ₂ Nanooctahedra as an Anode Material for High-Rate and Long-Life Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2017, 9, 311-316.	8.0	234
56	Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nature Nanotechnology, 2014, 9, 142-147.	31.5	230
57	One-Pot Synthesized Bicontinuous Hierarchical Li ₃ V ₂ (PO ₄) ₃ /C Mesoporous Nanowires for High-Rate and Ultralong-Life Lithium-ion Batteries. Nano Letters, 2014, 14, 1042-1048.	9.1	230
58	Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries. Nano Energy, 2016, 25, 145-153.	16.0	230
59	From MoO ₃ Nanobelts to MoO ₂ Nanorods: Structure Transformation and Electrical Transport. ACS Nano, 2009, 3, 478-482.	14.6	228
60	Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property. Nano Energy, 2018, 48, 617-629.	16.0	227
61	Ultrastable and High-Performance Zn/VO ₂ Battery Based on a Reversible Single-Phase Reaction. Chemistry of Materials, 2019, 31, 699-706.	6.7	227
62	Activation of Sodium Storage Sites in Prussian Blue Analogues via Surface Etching. Nano Letters, 2017, 17, 4713-4718.	9.1	225
63	Monodisperse and homogeneous SiO /C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries. Energy Storage Materials, 2018, 13, 112-118.	18.0	222
64	Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage. Nano Energy, 2015, 12, 437-446.	16.0	220
65	Advances in Structure and Property Optimizations of Battery Electrode Materials. Joule, 2017, 1, 522-547.	24.0	219
66	Finely Crafted 3D Electrodes for Dendriteâ€Free and Highâ€Performance Flexible Fiberâ€Shaped Zn–Co Batteries. Advanced Functional Materials, 2018, 28, 1802016.	14.9	216
67	Defectâ€Rich Soft Carbon Porous Nanosheets for Fast and Highâ€Capacity Sodiumâ€ŀon Storage. Advanced Energy Materials, 2019, 9, 1803260.	19.5	214
68	Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for Sodium Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 20902-20908.	8.0	210
69	Nanoscroll Buffered Hybrid Nanostructural VO ₂ (B) Cathodes for Highâ€Rate and Longâ€Life Lithium Storage. Advanced Materials, 2013, 25, 2969-2973.	21.0	207
70	Cucumber-Like V ₂ O ₅ /poly(3,4-ethylenedioxythiophene)&MnO ₂ Nanowires with Enhanced Electrochemical Cyclability. Nano Letters, 2013, 13, 740-745.	9.1	201
71	Ultrathin MoO2 nanosheets for superior lithium storage. Nano Energy, 2015, 11, 129-135.	16.0	199
72	Sodium-based batteries: from critical materials to battery systems. Journal of Materials Chemistry A, 2019, 7, 9406-9431.	10.3	199

#	Article	IF	CITATIONS
73	Comprehensive Understandings into Complete Reconstruction of Precatalysts: Synthesis, Applications, and Characterizations. Advanced Materials, 2021, 33, e2007344.	21.0	198
74	Double-shell Li-rich layered oxide hollow microspheres with sandwich-like carbon@spinel@layered@spinel@carbon shells as high-rate lithium ion battery cathode. Nano Energy, 2019, 59, 184-196.	16.0	194
75	Ultrafine Nickelâ€Nanoparticleâ€Enabled SiO ₂ Hierarchical Hollow Spheres for Highâ€Performance Lithium Storage. Advanced Functional Materials, 2018, 28, 1704561.	14.9	193
76	Bottomâ€Up Confined Synthesis of Nanorodâ€inâ€Nanotube Structured Sb@N for Durable Lithium and Sodium Storage. Advanced Energy Materials, 2018, 8, 1703237.	19.5	192
77	Hydrated vanadium pentoxide with superior sodium storage capacity. Journal of Materials Chemistry A, 2015, 3, 8070-8075.	10.3	190
78	Nanowire Templated Semihollow Bicontinuous Graphene Scrolls: Designed Construction, Mechanism, and Enhanced Energy Storage Performance. Journal of the American Chemical Society, 2013, 135, 18176-18182.	13.7	187
79	Synergistic Effect of Hierarchical Nanostructured MoO ₂ /Co(OH) ₂ with Largely Enhanced Pseudocapacitor Cyclability. Nano Letters, 2013, 13, 5685-5691.	9.1	186
80	Metal–organic framework derived carbon-confined Ni ₂ P nanocrystals supported on graphene for an efficient oxygen evolution reaction. Chemical Communications, 2017, 53, 8372-8375.	4.1	184
81	Three-Dimensional Crumpled Reduced Graphene Oxide/MoS ₂ Nanoflowers: A Stable Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 12625-12630.	8.0	183
82	Magnesium storage performance and mechanism of CuS cathode. Nano Energy, 2018, 47, 210-216.	16.0	183
83	Fast Ionic Diffusion-Enabled Nanoflake Electrode by Spontaneous Electrochemical Pre-Intercalation for High-Performance Supercapacitor. Scientific Reports, 2013, 3, .	3.3	182
84	Vanadium Oxide Pillared by Interlayer Mg2+ Ions and Water as Ultralong-Life Cathodes for Magnesium-Ion Batteries. CheM, 2019, 5, 1194-1209.	11.7	180
85	Reconstructionâ€Determined Alkaline Water Electrolysis at Industrial Temperatures. Advanced Materials, 2020, 32, e2001136.	21.0	177
86	A Novel Dendriteâ€Free Mn ²⁺ /Zn ²⁺ Hybrid Battery with 2.3 V Voltage Window and 11000 ycle Lifespan. Advanced Energy Materials, 2019, 9, 1901469.	19.5	175
87	Interlayer‧pacingâ€Regulated VOPO ₄ Nanosheets with Fast Kinetics for Highâ€Capacity and Durable Rechargeable Magnesium Batteries. Advanced Materials, 2018, 30, e1801984.	21.0	171
88	Lithium Deficiencies Engineering in Li-Rich Layered Oxide Li _{1.098} Mn _{0.533} Ni _{0.113} Co _{0.138} O ₂ for High-Stability Cathode. Journal of the American Chemical Society, 2019, 141, 10876-10882.	13.7	171
89	Realizing Threeâ€Electron Redox Reactions in NASICONâ€Structured Na ₃ MnTi(PO ₄) ₃ for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1803436.	19.5	171
90	Engineering Oxygen Vacancies in a Polysulfideâ€Blocking Layer with Enhanced Catalytic Ability. Advanced Materials, 2020, 32, e1907444.	21.0	171

#	Article	IF	CITATIONS
91	Graphene decorated vanadium oxide nanowire aerogel for long-cycle-life magnesium battery cathodes. Nano Energy, 2015, 18, 265-272.	16.0	170
92	Nanoflakeâ€Assembled Hierarchical Na ₃ V ₂ (PO ₄) ₃ /C Microflowers: Superior Li Storage Performance and Insertion/Extraction Mechanism. Advanced Energy Materials, 2015, 5, 1401963.	19.5	169
93	Nanowires in Energy Storage Devices: Structures, Synthesis, and Applications. Advanced Energy Materials, 2018, 8, 1802369.	19.5	169
94	Recent Advances and Prospects of Cathode Materials for Rechargeable Aqueous Zincâ€lon Batteries. Advanced Materials Interfaces, 2019, 6, 1900387.	3.7	169
95	Dielectric spectroscopy studies on (PVP+PVA) polyblend film. Microelectronic Engineering, 2006, 83, 281-285.	2.4	168
96	Mesoporous NiS ₂ Nanospheres Anode with Pseudocapacitance for Highâ€Rate and Longâ€Life Sodiumâ€Ion Battery. Small, 2017, 13, 1701744.	10.0	168
97	Vanadateâ€Based Materials for Liâ€lon Batteries: The Search for Anodes for Practical Applications. Advanced Energy Materials, 2019, 9, 1803324.	19.5	168
98	All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy, 2016, 26, 446-455.	16.0	167
99	Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chemical Communications, 2018, 54, 4041-4044.	4.1	167
100	Yolk@Shell SiO /C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage. Energy Storage Materials, 2019, 19, 299-305.	18.0	167
101	Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium–sulfur battery. Nano Research, 2016, 9, 240-248.	10.4	165
102	Upraising the O 2p Orbital by Integrating Ni with MoO ₂ for Accelerating Hydrogen Evolution Kinetics. ACS Catalysis, 2019, 9, 2275-2285.	11.2	165
103	Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+ intercalation/de-intercalation. Nano Energy, 2019, 58, 492-498.	16.0	161
104	Identification of Phase Control of Carbonâ€Confined Nb ₂ O ₅ Nanoparticles toward Highâ€Performance Lithium Storage. Advanced Energy Materials, 2019, 9, 1802695.	19.5	161
105	Stable Alkali Metal Ion Intercalation Compounds as Optimized Metal Oxide Nanowire Cathodes for Lithium Batteries. Nano Letters, 2015, 15, 2180-2185.	9.1	160
106	The synergetic interaction between LiNO3 and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries. Energy Storage Materials, 2018, 11, 24-29.	18.0	160
107	Hierarchical zigzag Na _{1.25} V ₃ O ₈ nanowires with topotactically encoded superior performance for sodium-ion battery cathodes. Energy and Environmental Science, 2015, 8, 1267-1275.	30.8	158
108	Sodium Vanadium Fluorophosphates (NVOPF) Array Cathode Designed for Highâ€Rate Full Sodium Ion Storage Device. Advanced Energy Materials, 2018, 8, 1800058.	19.5	157

#	Article	IF	CITATIONS
109	Heterostructured Bi ₂ S ₃ –Bi ₂ O ₃ Nanosheets with a Built-In Electric Field for Improved Sodium Storage. ACS Applied Materials & Interfaces, 2018, 10, 7201-7207.	8.0	153
110	Building better zinc-ion batteries: A materials perspective. EnergyChem, 2019, 1, 100022.	19.1	153
111	Recent Advances in Rational Electrode Designs for Highâ€Performance Alkaline Rechargeable Batteries. Advanced Functional Materials, 2019, 29, 1807847.	14.9	152
112	Novel K ₃ V ₂ (PO ₄) ₃ /C Bundled Nanowires as Superior Sodiumâ€Ion Battery Electrode with Ultrahigh Cycling Stability. Advanced Energy Materials, 2015, 5, 1500716.	19.5	150
113	Polycrystalline soft carbon semi-hollow microrods as anode for advanced K-ion full batteries. Nanoscale, 2017, 9, 18216-18222.	5.6	150
114	Built-in oriented electric field facilitating durable Zn MnO2 battery. Nano Energy, 2019, 62, 79-84.	16.0	150
115	Field Effect Enhanced Hydrogen Evolution Reaction of MoS ₂ Nanosheets. Advanced Materials, 2017, 29, 1604464.	21.0	148
116	Oxygen Vacancy-Determined Highly Efficient Oxygen Reduction in NiCo ₂ O ₄ /Hollow Carbon Spheres. ACS Applied Materials & Interfaces, 2018, 10, 16410-16417.	8.0	148
117	Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12212-12216.	7.1	144
118	Single Nanowire Electrochemical Devices. Nano Letters, 2010, 10, 4273-4278.	9.1	143
119	Self-Organized 3D Porous Graphene Dual-Doped with Biomass-Sponsored Nitrogen and Sulfur for Oxygen Reduction and Evolution. ACS Applied Materials & amp; Interfaces, 2016, 8, 29408-29418.	8.0	143
120	Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage. Nano Energy, 2017, 37, 108-117.	16.0	143
121	Vanadium-Based Cathode Materials for Rechargeable Multivalent Batteries: Challenges and Opportunities. Electrochemical Energy Reviews, 2018, 1, 169-199.	25.5	142
122	Single β-AgVO ₃ Nanowire H ₂ S Sensor. Nano Letters, 2010, 10, 2604-2608.	9.1	141
123	Integrated Intercalationâ€Based and Interfacial Sodium Storage in Grapheneâ€Wrapped Porous Li ₄ Ti ₅ O ₁₂ Nanofibers Composite Aerogel. Advanced Energy Materials, 2016, 6, 1600322.	19.5	141
124	Heterogeneous branched core–shell SnO2–PANI nanorod arrays with mechanical integrity and three dimentional electron transport for lithium batteries. Nano Energy, 2014, 8, 196-204.	16.0	140
125	Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene. Nature Communications, 2014, 5, 4565.	12.8	139
126	Ultralong Sb ₂ Se ₃ Nanowire-Based Free-Standing Membrane Anode for Lithium/Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 35219-35226.	8.0	139

#	Article	IF	CITATIONS
127	Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy, 2016, 28, 224-231.	16.0	139
128	Zn ²⁺ Preâ€Intercalation Stabilizes the Tunnel Structure of MnO ₂ Nanowires and Enables Zincâ€Ion Hybrid Supercapacitor of Batteryâ€Level Energy Density. Small, 2020, 16, e2000091.	10.0	139
129	Deep Reconstruction of Nickel-Based Precatalysts for Water Oxidation Catalysis. ACS Energy Letters, 2019, 4, 2585-2592.	17.4	137
130	Alkaline earth metal vanadates as sodium-ion battery anodes. Nature Communications, 2017, 8, 460.	12.8	136
131	Interwoven Three-Dimensional Architecture of Cobalt Oxide Nanobrush-Graphene@Ni _{<i>x</i>} Co _{2<i>x</i>} (OH) _{6<i>x</i>} for High-Performance Supercapacitors. Nano Letters, 2015, 15, 2037-2044.	9.1	134
132	Field-Effect Tuned Adsorption Dynamics of VSe ₂ Nanosheets for Enhanced Hydrogen Evolution Reaction. Nano Letters, 2017, 17, 4109-4115.	9.1	134
133	α-MoO3- by plasma etching with improved capacity and stabilized structure for lithium storage. Nano Energy, 2018, 49, 555-563.	16.0	133
134	Carbonâ€MEMSâ€Based Alternating Stacked MoS ₂ @rGOâ€CNT Microâ€Supercapacitor with High Capacitance and Energy Density. Small, 2017, 13, 1700639.	10.0	132
135	Air-Stable Porous Fe ₂ N Encapsulated in Carbon Microboxes with High Volumetric Lithium Storage Capacity and a Long Cycle Life. Nano Letters, 2017, 17, 5740-5746.	9.1	132
136	Nanostructured Conversionâ€Type Negative Electrode Materials for Lowâ€Cost and Highâ€Performance Sodiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1804458.	14.9	132
137	Porous carbonized graphene-embedded fungus film as an interlayer for superior Li–S batteries. Nano Energy, 2015, 17, 224-232.	16.0	130
138	Molybdenum oxide nanowires: synthesis & amp; properties. Materials Today, 2011, 14, 346-353.	14.2	125
139	Li3V(MoO4)3 as a novel electrode material with good lithium storage properties and improved initial coulombic efficiency. Nano Energy, 2018, 44, 272-278.	16.0	125
140	Reducing frictional power losses and improving the scuffing resistance in automotive engines using hybrid nanomaterials as nano-lubricant additives. Wear, 2016, 364-365, 270-281.	3.1	124
141	Prussian White Hierarchical Nanotubes with Surfaceâ€Controlled Charge Storage for Sodiumâ€lon Batteries. Advanced Functional Materials, 2019, 29, 1806405.	14.9	124
142	Energy storage through intercalation reactions: electrodes for rechargeable batteries. National Science Review, 2017, 4, 26-53.	9.5	122
143	Introduction: 1D Nanomaterials/Nanowires. Chemical Reviews, 2019, 119, 8955-8957.	47.7	121
144	Bilayered Mg _{0.25} V ₂ O ₅ ·H ₂ O as a Stable Cathode for Rechargeable Ca-Ion Batteries. ACS Energy Letters, 2019, 4, 1328-1335.	17.4	121

#	Article	IF	CITATIONS
145	Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery. Nano Energy, 2017, 38, 82-90.	16.0	119
146	Greigite Fe ₃ S ₄ as a new anode material for high-performance sodium-ion batteries. Chemical Science, 2017, 8, 160-164.	7.4	119
147	Vanadium dioxide for energy conservation and energy storage applications: Synthesis and performance improvement. Applied Energy, 2018, 211, 200-217.	10.1	118
148	Complete Reconstruction of Hydrate Pre-Catalysts for Ultrastable Water Electrolysis in Industrial-Concentration Alkali Media. Cell Reports Physical Science, 2020, 1, 100241.	5.6	117
149	Electrical Property of Mo-Doped VO2 Nanowire Array Film by Meltingâ `Quenching Solâ `Gel Method. Journal of Physical Chemistry B, 2006, 110, 19083-19086.	2.6	115
150	Room temperature single-photon emission and lasing for all-inorganic colloidal perovskite quantum dots. Nano Energy, 2016, 28, 462-468.	16.0	115
151	Ultrafine SiO _x /C nanospheres and their pomegranate-like assemblies for high-performance lithium storage. Journal of Materials Chemistry A, 2018, 6, 14903-14909.	10.3	115
152	Graphene Oxide Wrapped Amorphous Copper Vanadium Oxide with Enhanced Capacitive Behavior for Highâ€Rate and Longâ€Life Lithiumâ€Ion Battery Anodes. Advanced Science, 2015, 2, 1500154.	11.2	114
153	Interface-modulated fabrication of hierarchical yolk–shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage. Nano Research, 2017, 10, 2364-2376.	10.4	113
154	Self-sacrificed synthesis of carbon-coated SiO _x nanowires for high capacity lithium ion battery anodes. Journal of Materials Chemistry A, 2017, 5, 4183-4189.	10.3	112
155	Multidimensional Synergistic Nanoarchitecture Exhibiting Highly Stable and Ultrafast Sodiumâ€lon Storage. Advanced Materials, 2018, 30, e1707122.	21.0	112
156	Porous V ₂ O ₅ microspheres: a high-capacity cathode material for aqueous zinc–ion batteries. Chemical Communications, 2019, 55, 8486-8489.	4.1	112
157	Rational Synthesis of Silver Vanadium Oxides/Polyaniline Triaxial Nanowires with Enhanced Electrochemical Property. Nano Letters, 2011, 11, 4992-4996.	9.1	111
158	ZnSe Microsphere/Multiwalled Carbon Nanotube Composites as High-Rate and Long-Life Anodes for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 19626-19632.	8.0	111
159	Quicker and More Zn ²⁺ Storage Predominantly from the Interface. Advanced Materials, 2021, 33, e2100359.	21.0	111
160	Robust three-dimensional graphene skeleton encapsulated Na3V2O2(PO4)2F nanoparticles as a high-rate and long-life cathode of sodium-ion batteries. Nano Energy, 2017, 41, 452-459.	16.0	110
161	Electrostatic Assembly of Sandwich-like Ag-C@ZnO-C@Ag-C Hybrid Hollow Microspheres with Excellent High-Rate Lithium Storage Properties. ACS Nano, 2016, 10, 1283-1291.	14.6	109
162	Antimony nanoparticles anchored in three-dimensional carbon network as promising sodium-ion battery anode. Journal of Power Sources, 2016, 304, 340-345.	7.8	109

#	Article	IF	CITATIONS
163	Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries. Nanoscale, 2018, 10, 6820-6826.	5.6	109
164	Ligand Modulation of Active Sites to Promote Electrocatalytic Oxygen Evolution. Advanced Materials, 2022, 34, e2200270.	21.0	108
165	Eutectic Electrolyte with Unique Solvation Structure for Highâ€Performance Zincâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	108
166	High-rate and long-life VS2 cathodes for hybrid magnesium-based battery. Energy Storage Materials, 2018, 12, 61-68.	18.0	106
167	Mg Doped Li–LiB Alloy with In Situ Formed Lithiophilic LiB Skeleton for Lithium Metal Batteries. Advanced Science, 2020, 7, 1902643.	11.2	106
168	Ultrasmall cobalt nanoparticles supported on nitrogen-doped porous carbon nanowires for hydrogen evolution from ammonia borane. Materials Horizons, 2017, 4, 268-273.	12.2	105
169	Nickel Chelate Derived NiS ₂ Decorated with Bifunctional Carbon: An Efficient Strategy to Promote Sodium Storage Performance. Advanced Functional Materials, 2018, 28, 1803690.	14.9	104
170	Three dimensional porous frameworks for lithium dendrite suppression. Journal of Energy Chemistry, 2020, 44, 73-89.	12.9	104
171	Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy, 2016, 25, 80-90.	16.0	103
172	VO ₂ Nanoflakes as the Cathode Material of Hybrid Magnesium–Lithium-Ion Batteries with High Energy Density. ACS Applied Materials & Interfaces, 2017, 9, 17060-17066.	8.0	101
173	Tailoring porous carbon spheres for supercapacitors. Nanoscale, 2018, 10, 21604-21616.	5.6	101
174	<i>In situ</i> structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. Energy and Environmental Science, 2020, 13, 2200-2208.	30.8	101
175	Top-Down Strategy to Synthesize Mesoporous Dual Carbon Armored MnO Nanoparticles for Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2017, 9, 12680-12686.	8.0	100
176	Mesoporous Li ₃ VO ₄ /C Submicronâ€Ellipsoids Supported on Reduced Graphene Oxide as Practical Anode for Highâ€Power Lithiumâ€Ion Batteries. Advanced Science, 2015, 2, 1500284.	11.2	99
177	Two-Dimensional Mesoporous Heterostructure Delivering Superior Pseudocapacitive Sodium Storage via Bottom-Up Monomicelle Assembly. Journal of the American Chemical Society, 2019, 141, 16755-16762.	13.7	99
178	Track batteries degrading in real time. Nature, 2017, 546, 469-470.	27.8	98
179	Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage. ACS Applied Materials & Interfaces, 2021, 13, 3999-4007.	8.0	98
180	Effect of modification by poly(ethylene oxide) on the reversibility of insertion/extraction of Li+ ion in V2O5 xerogel films. Journal of Materials Chemistry, 2002, 12, 1926-1929.	6.7	97

#	Article	IF	CITATIONS
181	In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices. Nano Energy, 2016, 24, 165-188.	16.0	97
182	Cathodic polarization suppressed sodium-ion full cell with a 3.3 V high-voltage. Nano Energy, 2016, 28, 216-223.	16.0	97
183	Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric micro-supercapacitors. Nano Research, 2017, 10, 2471-2481.	10.4	97
184	H ₂ V ₃ O ₈ Nanowires as High-Capacity Cathode Materials for Magnesium-Based Battery. ACS Applied Materials & Interfaces, 2017, 9, 28667-28673.	8.0	97
185	A rechargeable aluminum-ion battery based on a VS ₂ nanosheet cathode. Physical Chemistry Chemical Physics, 2018, 20, 22563-22568.	2.8	97
186	A unique hollow Li ₃ VO ₄ /carbon nanotube composite anode for high rate long-life lithium-ion batteries. Nanoscale, 2014, 6, 11072-11077.	5.6	96
187	Emerging Prototype Sodiumâ€lon Full Cells with Nanostructured Electrode Materials. Small, 2017, 13, 1604181.	10.0	96
188	Active sites enriched hard carbon porous nanobelts for stable and high-capacity potassium-ion storage. Nano Energy, 2020, 77, 105018.	16.0	96
189	<i>In situ</i> nitrogen-doped mesoporous carbon nanofibers as flexible freestanding electrodes for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 23620-23627.	10.3	95
190	Design and Synthesis of Diverse Functional Kinked Nanowire Structures for Nanoelectronic Bioprobes. Nano Letters, 2013, 13, 746-751.	9.1	94
191	Lattice Breathing Inhibited Layered Vanadium Oxide Ultrathin Nanobelts for Enhanced Sodium Storage. ACS Applied Materials & Interfaces, 2015, 7, 18211-18217.	8.0	94
192	Pseudocapacitive titanium oxynitride mesoporous nanowires with iso-oriented nanocrystals for ultrahigh-rate sodium ion hybrid capacitors. Journal of Materials Chemistry A, 2017, 5, 10827-10835.	10.3	94
193	<i>In situ</i> / <i>operando</i> characterization techniques for rechargeable lithium–sulfur batteries: a review. Nanoscale, 2017, 9, 19001-19016.	5.6	94
194	Silica Restricting the Sulfur Volatilization of Nickel Sulfide for Highâ€Performance Lithiumâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1901153.	19.5	94
195	All Carbon Dual Ion Batteries. ACS Applied Materials & amp; Interfaces, 2018, 10, 35978-35983.	8.0	93
196	Yolk-shell-structured zinc-cobalt binary metal sulfide @ N-doped carbon for enhanced lithium-ion storage. Nano Energy, 2019, 64, 103899.	16.0	93
197	Intercalation of cations into partially reduced molybdenum oxide for high-rate pseudocapacitors. Energy Storage Materials, 2015, 1, 1-8.	18.0	92
198	K ⁺ modulated K ⁺ /vacancy disordered layered oxide for high-rate and high-capacity potassium-ion batteries. Energy and Environmental Science, 2020, 13, 3129-3137.	30.8	92

#	Article	IF	CITATIONS
199	Dual carbon decorated Na3MnTi(PO4)3: A high-energy-density cathode material for sodium-ion batteries. Nano Energy, 2020, 70, 104548.	16.0	92
200	Topotactically synthesized ultralong LiV3O8 nanowire cathode materials for high-rate and long-life rechargeable lithium batteries. NPG Asia Materials, 2012, 4, e20-e20.	7.9	91
201	FeSe2 clusters with excellent cyclability and rate capability for sodium-ion batteries. Nano Research, 2017, 10, 3202-3211.	10.4	91
202	Nanoflakesâ€Assembled Threeâ€Ðimensional Hollowâ€Porous V ₂ O ₅ as Lithium Storage Cathodes with Highâ€Rate Capacity. Small, 2014, 10, 3032-3037.	10.0	90
203	Lowâ€strain TiP ₂ O ₇ with threeâ€dimensional ion channels as longâ€life and highâ€rate anode material for Mgâ€ion batteries. , 2022, 1, 140-147.		90
204	Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Research, 2019, 12, 1025-1031.	10.4	89
205	Efficient and stable noble-metal-free catalyst for acidic water oxidation. Nature Communications, 2022, 13, 2294.	12.8	89
206	Onâ€Chip Ni–Zn Microbattery Based on Hierarchical Ordered Porous Ni@Ni(OH) ₂ Microelectrode with Ultrafast Ion and Electron Transport Kinetics. Advanced Functional Materials, 2019, 29, 1808470.	14.9	88
207	Phosphorus Enhanced Intermolecular Interactions of SnO ₂ and Graphene as an Ultrastable Lithium Battery Anode. Small, 2017, 13, 1603973.	10.0	87
208	One-Dimensional Hetero-Nanostructures for Rechargeable Batteries. Accounts of Chemical Research, 2018, 51, 950-959.	15.6	87
209	Pseudocapacitive layered iron vanadate nanosheets cathode for ultrahigh-rate lithium ion storage. Nano Energy, 2018, 47, 294-300.	16.0	87
210	Realizing Superior Prussian Blue Positive Electrode for Potassium Storage via Ultrathin Nanosheet Assembly. ACS Sustainable Chemistry and Engineering, 2019, 7, 11564-11570.	6.7	87
211	Synthesis and Electrical Transport of Single-Crystal NH4V3O8Nanobelts. Journal of Physical Chemistry B, 2006, 110, 18138-18141.	2.6	86
212	Anchoring Subâ€Nanometer Pt Clusters on Crumpled Paper‣ike MXene Enables High Hydrogen Evolution Mass Activity. Advanced Functional Materials, 2022, 32, .	14.9	86
213	Large‣cale Integration of a Zinc Metasilicate Interface Layer Guiding Wellâ€Regulated Zn Deposition. Advanced Materials, 2022, 34, e2202188.	21.0	86
214	A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries. Chemical Engineering Journal, 2020, 395, 124979.	12.7	85
215	Reversible V3+/V5+ double redox in lithium vanadium oxide cathode for zinc storage. Energy Storage Materials, 2020, 29, 113-120.	18.0	85
216	Long-life and high-rate Li3V2(PO4)3/C nanosphere cathode materials with three-dimensional continuous electron pathways. Nanoscale, 2013, 5, 4864.	5.6	84

#	Article	IF	CITATIONS
217	Hierarchical three-dimensional MnO nanorods/carbon anodes for ultralong-life lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 16936-16945.	10.3	84
218	Dual Electrostatic Assembly of Graphene Encapsulated Nanosheetâ€Assembled ZnOâ€Mn Hollow Microspheres as a Lithium Ion Battery Anode. Advanced Functional Materials, 2018, 28, 1707433.	14.9	83
219	Nonhierarchical Heterostructured Fe ₂ O ₃ /Mn ₂ O ₃ Porous Hollow Spheres for Enhanced Lithium Storage. Small, 2018, 14, e1800659.	10.0	83
220	Copper Silicate Hydrate Hollow Spheres Constructed by Nanotubes Encapsulated in Reduced Graphene Oxide as Long-Life Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2015, 7, 26572-26578.	8.0	82
221	Nickel-iron bimetallic diselenides with enhanced kinetics for high-capacity and long-life magnesium batteries. Nano Energy, 2018, 54, 360-366.	16.0	82
222	Acetylene Black Induced Heterogeneous Growth of Macroporous CoV ₂ O ₆ Nanosheet for High-Rate Pseudocapacitive Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2016, 8, 7139-7146.	8.0	81
223	Lowâ€Temperature Moltenâ€Salt Production of Silicon Nanowires by the Electrochemical Reduction of CaSiO ₃ . Angewandte Chemie - International Edition, 2017, 56, 14453-14457.	13.8	81
224	Carbon dioxide directly induced oxygen vacancy in the surface of lithium-rich layered oxides for high-energy lithium storage. Journal of Power Sources, 2019, 432, 8-15.	7.8	81
225	Engineering Mesoporous Structure in Amorphous Carbon Boosts Potassium Storage with High Initial Coulombic Efficiency. Nano-Micro Letters, 2020, 12, 148.	27.0	81
226	Zwitterionic Bifunctional Layer for Reversible Zn Anode. ACS Energy Letters, 2022, 7, 1719-1727.	17.4	81
227	Yolk–shell Nb ₂ O ₅ microspheres as intercalation pseudocapacitive anode materials for high-energy Li-ion capacitors. Journal of Materials Chemistry A, 2019, 7, 11234-11240.	10.3	80
228	Rechargeable metal (Li, Na, Mg, Al)-sulfur batteries: Materials and advances. Journal of Energy Chemistry, 2021, 61, 104-134.	12.9	80
229	Flexible additive free H ₂ V ₃ O ₈ nanowire membrane as cathode for sodium ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 12074-12079.	2.8	79
230	Porous and Low-Crystalline Manganese Silicate Hollow Spheres Wired by Graphene Oxide for High-Performance Lithium and Sodium Storage. ACS Applied Materials & Interfaces, 2017, 9, 24584-24590.	8.0	79
231	Monodisperse Carbon Sphere-Constructed Pomegranate-Like Structures for High-Volumetric-Capacitance Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 4011-4016.	8.0	79
232	Ultrathin pre-lithiated V6O13 nanosheet cathodes with enhanced electrical transport and cyclability. Journal of Power Sources, 2014, 255, 235-241.	7.8	78
233	Heterostructure Design in Bimetallic Phthalocyanine Boosts Oxygen Reduction Reaction Activity and Durability. Advanced Functional Materials, 2020, 30, 2005000.	14.9	78
234	Rational Design of Preintercalated Electrodes for Rechargeable Batteries. ACS Energy Letters, 2019, 4, 771-778.	17.4	77

#	Article	IF	CITATIONS
235	V2O5 quantum dots/graphene hybrid nanocomposite with stable cyclability for advanced lithium batteries. Nano Energy, 2013, 2, 916-922.	16.0	76
236	Top-down fabrication of three-dimensional porous V ₂ O ₅ hierarchical microplates with tunable porosity for improved lithium battery performance. Journal of Materials Chemistry A, 2014, 2, 3297-3302.	10.3	76
237	Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano Energy, 2021, 87, 106153.	16.0	76
238	Preparation and characterization of (PVP + NaClO4) electrolytes for battery applications. European Physical Journal E, 2006, 19, 471-476.	1.6	75
239	Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries. Physical Chemistry Chemical Physics, 2013, 15, 16828.	2.8	74
240	Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Research, 2015, 8, 481-490.	10.4	74
241	Integrated SnO ₂ nanorod array with polypyrrole coverage for high-rate and long-life lithium batteries. Physical Chemistry Chemical Physics, 2015, 17, 7619-7623.	2.8	74
242	Graphene Oxide Templated Growth and Superior Lithium Storage Performance of Novel Hierarchical Co ₂ V ₂ O ₇ Nanosheets. ACS Applied Materials & Interfaces, 2016, 8, 2812-2818.	8.0	74
243	Orientated Langmuirâ^'Blodgett Assembly of VO ₂ Nanowires. Nano Letters, 2009, 9, 826-830.	9.1	73
244	Pore-controlled synthesis of Mn ₂ O ₃ microspheres for ultralong-life lithium storage electrode. RSC Advances, 2013, 3, 1947-1952.	3.6	73
245	Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Research, 2016, 9, 2510-2519.	10.4	73
246	Thermal Induced Strain Relaxation of 1D Iron Oxide for Solid Electrolyte Interphase Control and Lithium Storage Improvement. Advanced Energy Materials, 2017, 7, 1601582.	19.5	73
247	Self-adaptive mesoporous CoS@alveolus-like carbon yolk-shell microsphere for alkali cations storage. Nano Energy, 2017, 41, 109-116.	16.0	73
248	3.0 V High Energy Density Symmetric Sodium-Ion Battery: Na ₄ V ₂ (PO ₄) ₃ â^¥Na ₃ V ₂ (PO <sub ACS Applied Materials & Interfaces, 2018, 10, 10022-10028.</sub 	>4 s/s ub>)	<s¤b>3</s
249	Ni foam supported NiO nanosheets as high-performance free-standing electrodes for hybrid supercapacitors and Ni–Zn batteries. Journal of Materials Chemistry A, 2018, 6, 19488-19494.	10.3	73
250	1D Carbonâ€Based Nanocomposites for Electrochemical Energy Storage. Small, 2019, 15, e1902348.	10.0	73
251	Highâ€Energy Aqueous Ammoniumâ€Ion Hybrid Supercapacitors. Advanced Materials, 2022, 34, e2107992.	21.0	73
252	Inhibiting effect of Na+ pre-intercalation in MoO3 nanobelts with enhanced electrochemical performance. Nano Energy, 2015, 15, 145-152.	16.0	72

#	Article	IF	CITATIONS
253	Facile synthesis of reduced graphene oxide wrapped nickel silicate hierarchical hollow spheres for long-life lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19427-19432.	10.3	72
254	Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Porous Graphene in Electrochemical Devices. Nano Letters, 2016, 16, 1523-1529.	9.1	72
255	The Holy Grail in Platinumâ€Free Electrocatalytic Hydrogen Evolution: Molybdenumâ€Based Catalysts and Recent Advances. ChemElectroChem, 2019, 6, 3570-3589.	3.4	72
256	Hierarchical MnCo ₂ O ₄ @NiMoO ₄ as free-standing core–shell nanowire arrays with synergistic effect for enhanced supercapacitor performance. Inorganic Chemistry Frontiers, 2019, 6, 857-865.	6.0	72
257	Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage. Nano Energy, 2019, 58, 347-354.	16.0	72
258	A Covalent Organic Framework for Fast-Charge and Durable Rechargeable Mg Storage. Nano Letters, 2020, 20, 3880-3888.	9.1	72
259	Comprehensive Insights into Electrolytes and Solid Electrolyte Interfaces in Potassium-Ion Batteries. Energy Storage Materials, 2021, 38, 30-49.	18.0	72
260	MoB/g ₃ N ₄ Interface Materials as a Schottky Catalyst to Boost Hydrogen Evolution. Angewandte Chemie, 2018, 130, 505-509.	2.0	71
261	Raman spectroscopic study of vanadium oxide nanotubes. Journal of Solid State Chemistry, 2004, 177, 377-379.	2.9	70
262	Hierarchical Carbon Decorated Li ₃ V ₂ (PO ₄) ₃ as a Bicontinuous Cathode with Highâ€Rate Capability and Broad Temperature Adaptability. Advanced Energy Materials, 2014, 4, 1400107.	19.5	70
263	Arbitrary Shape Engineerable Spiral Micropseudocapacitors with Ultrahigh Energy and Power Densities. Advanced Materials, 2015, 27, 7476-7482.	21.0	70
264	Mo doped vanadium oxide nanotubes: microstructure and electrochemistry. Chemical Physics Letters, 2003, 382, 307-312.	2.6	69
265	Wrinkled-graphene enriched MoO3 nanobelts with increased conductivity and reduced stress for enhanced electrochemical performance. Physical Chemistry Chemical Physics, 2013, 15, 17165.	2.8	69
266	Co-Electrodeposited porous PEDOT–CNT microelectrodes for integrated micro-supercapacitors with high energy density, high rate capability, and long cycling life. Nanoscale, 2019, 11, 7761-7770.	5.6	69
267	Universal Approach to Fabricating Graphene-Supported Single-Atom Catalysts from Doped ZnO Solid Solutions. ACS Central Science, 2020, 6, 1431-1440.	11.3	69
268	Crystal regulation towards rechargeable magnesium battery cathode materials. Materials Horizons, 2020, 7, 1971-1995.	12.2	69
269	Synthesis of vanadium oxide nanotubes from V2O5 sols. Materials Letters, 2004, 58, 2275-2278.	2.6	67
270	Copper silicate nanotubes anchored on reduced graphene oxide for long-life lithium-ion battery. Energy Storage Materials, 2017, 7, 152-156.	18.0	67

#	Article	IF	CITATIONS
271	Novel MOF shell-derived surface modification of Li-rich layered oxide cathode for enhanced lithium storage. Science Bulletin, 2018, 63, 46-53.	9.0	67
272	Revealing the atomistic origin of the disorder-enhanced Na-storage performance in NaFePO4 battery cathode. Nano Energy, 2019, 57, 608-615.	16.0	67
273	Insights into the Storage Mechanism of Layered VS ₂ Cathode in Alkali Metalâ€ion Batteries. Advanced Energy Materials, 2020, 10, 1904118.	19.5	67
274	FTIR study of vanadium oxide nanotubes from lamellar structure. Journal of Materials Science, 2004, 39, 2625-2627.	3.7	66
275	Synthesis and gas sensing properties of Fe2O3 nanoparticles activated V2O5 nanotubes. Sensors and Actuators B: Chemical, 2010, 145, 211-215.	7.8	66
276	Facile synthesis of a Co ₃ V ₂ O ₈ interconnected hollow microsphere anode with superior high-rate capability for Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 5075-5080.	10.3	66
277	Macroscopic synthesis of ultrafine N–doped carbon nanofibers for superior capacitive energy storage. Science Bulletin, 2019, 64, 1617-1624.	9.0	66
278	Ultrafast cation insertion-selected zinc hexacyanoferrate for 1.9ÂV K–Zn hybrid aqueous batteries. Journal of Materials Chemistry A, 2020, 8, 6631-6637.	10.3	66
279	Vanadium oxide nanowires for Li-ion batteries. Journal of Materials Research, 2011, 26, 2175-2185.	2.6	65
280	A synergistic effect between layer surface configurations and K ions of potassium vanadate nanowires for enhanced energy storage performance. Journal of Materials Chemistry A, 2016, 4, 4893-4899.	10.3	65
281	Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Science Bulletin, 2019, 64, 617-624.	9.0	65
282	Enveloping SiO _x in N-doped carbon for durable lithium storage <i>via</i> an eco-friendly solvent-free approach. Journal of Materials Chemistry A, 2020, 8, 13285-13291.	10.3	65
283	Carbon-supported and nanosheet-assembled vanadium oxide microspheres for stable lithium-ion battery anodes. Nano Research, 2016, 9, 128-138.	10.4	64
284	Facile formation of tetragonal-Nb2O5 microspheres for high-rate and stable lithium storage with high areal capacity. Science Bulletin, 2020, 65, 1154-1162.	9.0	64
285	Insights into the storage mechanism of VS4 nanowire clusters in aluminum-ion battery. Nano Energy, 2021, 79, 105384.	16.0	64
286	A facile synthesis of three dimensional graphene sponge composited with sulfur nanoparticles for flexible Li–S cathodes. Physical Chemistry Chemical Physics, 2016, 18, 22146-22153.	2.8	63
287	Sodium Ion Capacitor Using Pseudocapacitive Layered Ferric Vanadate Nanosheets Cathode. IScience, 2018, 6, 212-221.	4.1	63
288	Methyl-functionalized MoS ₂ nanosheets with reduced lattice breathing for enhanced pseudocapacitive sodium storage. Physical Chemistry Chemical Physics, 2017, 19, 13696-13702.	2.8	62

#	Article	IF	CITATIONS
289	Surface Pseudocapacitive Mechanism of Molybdenum Phosphide for Highâ€Energy and Highâ€Power Sodiumâ€Ion Capacitors. Advanced Energy Materials, 2019, 9, 1900967.	19.5	62
290	Manganese ion pre-intercalated hydrated vanadium oxide as a high-performance cathode for magnesium ion batteries. Journal of Materials Chemistry A, 2019, 7, 10644-10650.	10.3	62
291	Recent Progress and Challenges in the Optimization of Electrode Materials for Rechargeable Magnesium Batteries. Small, 2021, 17, e2004108.	10.0	62
292	Solventâ€Free Synthesis of Uniform MOF Shellâ€Derived Carbon Confined SnO ₂ /Co Nanocubes for Highly Reversible Lithium Storage. Small, 2017, 13, 1701504.	10.0	62
293	Fast Ionic Storage in Aqueous Rechargeable Batteries: From Fundamentals to Applications. Advanced Materials, 2022, 34, e2105611.	21.0	62
294	In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices. Nano Letters, 2015, 15, 3879-3884.	9.1	61
295	An electrospun hierarchical LiV3O8 nanowire-in-network for high-rate and long-life lithium batteries. Journal of Materials Chemistry A, 2015, 3, 19850-19856.	10.3	61
296	Three dimensional V2O5/NaV6O15 hierarchical heterostructures: Controlled synthesis and synergistic effect investigated by in situ X-ray diffraction. Nano Energy, 2016, 27, 147-156.	16.0	61
297	Self-assembly synthesis of 3D graphene-encapsulated hierarchical Fe 3 O 4 nano-flower architecture with high lithium storage capacity and excellent rate capability. Journal of Power Sources, 2017, 365, 98-108.	7.8	61
298	Dynamic Restructuring of Coordinatively Unsaturated Copper Paddle Wheel Clusters to Boost Electrochemical CO ₂ Reduction to Hydrocarbons**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	61
299	Eutectic Electrolytes in Advanced Metal-Ion Batteries. ACS Energy Letters, 2022, 7, 247-260.	17.4	61
300	Cost-saving synthesis of vanadium oxide nanotubes. Solid State Communications, 2003, 126, 541-543.	1.9	60
301	Substrate-Assisted Self-Organization of Radial β-AgVO ₃ Nanowire Clusters for High Rate Rechargeable Lithium Batteries. Nano Letters, 2012, 12, 4668-4673.	9.1	60
302	New-type K0.7Fe0.5Mn0.5O2 cathode with an expanded and stabilized interlayer structure for high-capacity sodium-ion batteries. Nano Energy, 2017, 35, 71-78.	16.0	60
303	Threeâ€Dimensional Interconnected Vanadium Pentoxide Nanonetwork Cathode for Highâ€Rate Longâ€Life Lithium Batteries. Small, 2015, 11, 2654-2660.	10.0	59
304	Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application. Rare Metals, 2017, 36, 321-338.	7.1	59
305	Towards enhancing photocatalytic hydrogen generation: Which is more important, alloy synergistic effect or plasmonic effect?. Applied Catalysis B: Environmental, 2018, 221, 77-85.	20.2	59
306	Superior Hydrogen Evolution Reaction Performance in 2Hâ€MoS ₂ to that of 1T Phase. Small, 2019, 15, e1900964.	10.0	59

#	Article	IF	CITATIONS
307	Interface enhanced well-dispersed Co9S8 nanocrystals as an efficient polysulfide host in lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 48, 109-115.	12.9	59
308	Operando Xâ€ray Diffraction Characterization for Understanding the Intrinsic Electrochemical Mechanism in Rechargeable Battery Materials. Small Methods, 2017, 1, 1700083.	8.6	58
309	Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. National Science Review, 2021, 8, nwab055.	9.5	58
310	High-Energy and High-Power Pseudocapacitor–Battery Hybrid Sodium-Ion Capacitor with Na+ Intercalation Pseudocapacitance Anode. Nano-Micro Letters, 2021, 13, 55.	27.0	58
311	Electronic Structure Modulation in MoO ₂ /MoP Heterostructure to Induce Fast Electronic/Ionic Diffusion Kinetics for Lithium Storage. Advanced Science, 2022, 9, e2104504.	11.2	58
312	Self-template synthesis of hollow shell-controlled Li ₃ VO ₄ as a high-performance anode for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 18839-18842.	10.3	57
313	Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries. Nano Energy, 2016, 24, 130-138.	16.0	57
314	Shape-Controlled Deterministic Assembly of Nanowires. Nano Letters, 2016, 16, 2644-2650.	9.1	57
315	Uncovering the Cu-driven electrochemical mechanism of transition metal chalcogenides based electrodes. Energy Storage Materials, 2019, 16, 625-631.	18.0	56
316	A High-Rate V ₂ O ₅ Hollow Microclew Cathode for an All-Vanadium-Based Lithium-Ion Full Cell. Small, 2016, 12, 1082-1090.	10.0	55
317	Electronic Structure Control of Tungsten Oxide Activated by Ni for Ultrahighâ€Performance Supercapacitors. Small, 2018, 14, e1800381.	10.0	55
318	Conversion reaction of vanadium sulfide electrode in the lithium-ion cell: Reversible or not reversible?. Nano Energy, 2018, 51, 391-399.	16.0	55
319	Novel Polygonal Vanadium Oxide Nanoscrolls as Stable Cathode for Lithium Storage. Advanced Functional Materials, 2015, 25, 1773-1779.	14.9	54
320	Highly Efficient Non-Nucleophilic Mg(CF ₃ SO ₃) ₂ -Based Electrolyte for High-Power Mg/S Battery. ACS Applied Materials & Interfaces, 2020, 12, 17474-17480.	8.0	54
321	A novel cross-linked nanocomposite solid-state electrolyte with super flexibility and performance for lithium metal battery. Nano Energy, 2020, 71, 104600.	16.0	54
322	Spiral self-assembly of lamellar micelles into multi-shelled hollow nanospheres with unique chiral architecture. Science Advances, 2021, 7, eabi7403.	10.3	54
323	General Oriented Synthesis of Precise Carbon-Confined Nanostructures by Low-Pressure Vapor Superassembly and Controlled Pyrolysis. Nano Letters, 2017, 17, 7773-7781.	9.1	53
324	Structural Engineering and Coupling of Two-Dimensional Transition Metal Compounds for Micro-Supercapacitor Electrodes. ACS Central Science, 2020, 6, 1901-1915.	11.3	53

#	Article	IF	CITATIONS
325	Boosting the electrochemical performance and reliability of conducting polymer microelectrode via intermediate graphene for on-chip asymmetric micro-supercapacitor. Journal of Energy Chemistry, 2020, 49, 224-232.	12.9	53
326	Crystal defect modulation in cathode materials for non-lithium ion batteries: Progress and challenges. Materials Today, 2021, 45, 169-190.	14.2	53
327	Suppressing the Jahn–Teller Effect in Mnâ€Based Layered Oxide Cathode toward Longâ€Life Potassiumâ€lon Batteries. Advanced Functional Materials, 2022, 32, .	14.9	52
328	Universal construction of ultrafine metal oxides coupled in N-enriched 3D carbon nanofibers for high-performance lithium/sodium storage. Nano Energy, 2020, 67, 104222.	16.0	51
329	Surface Oxidation Layer-Mediated Conformal Carbon Coating on Si Nanoparticles for Enhanced Lithium Storage. ACS Applied Materials & Interfaces, 2021, 13, 3991-3998.	8.0	51
330	Regulating the Interlayer Spacings of Hard Carbon Nanofibers Enables Enhanced Pore Filling Sodium Storage. Small, 2022, 18, e2105303.	10.0	51
331	Three-dimensional graphene frameworks wrapped Li3V2(PO4)3 with reversible topotactic sodium-ion storage. Nano Energy, 2017, 32, 347-352.	16.0	50
332	Multistep Lithiation of Tin Sulfide: An Investigation Using <i>in Situ</i> Electron Microscopy. ACS Nano, 2018, 12, 3638-3645.	14.6	50
333	Waterâ€Soluble Crossâ€Linking Functional Binder for Lowâ€Cost and Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2021, 31, 2104858.	14.9	50
334	Coordination engineering of metal single atom on carbon for enhanced and robust potassium storage. Matter, 2021, 4, 4006-4021.	10.0	50
335	Hierarchically Selfâ€Assembled MOF Network Enables Continuous Ion Transport and High Mechanical Strength. Advanced Energy Materials, 2022, 12, .	19.5	50
336	The continuous efficient conversion and directional deposition of lithium (poly)sulfides enabled by bimetallic site regulation. Nano Energy, 2022, 98, 107332.	16.0	50
337	Oxygen evolution reaction dynamics monitored by an individual nanosheet-based electronic circuit. Nature Communications, 2017, 8, 645.	12.8	49
338	Naâ€Mnâ€O Nanocrystals as a High Capacity and Long Life Anode Material for Liâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1602092.	19.5	49
339	Salt-controlled dissolution in pigment cathode for high-capacity and long-life magnesium organic batteries. Nano Energy, 2019, 65, 103902.	16.0	49
340	Cobalt-doping in hierarchical Ni ₃ S ₂ nanorod arrays enables high areal capacitance. Journal of Materials Chemistry A, 2020, 8, 13114-13120.	10.3	49
341	Polydopamine sacrificial layer mediated SiO _x /C@C yolk@shell structure for durable lithium storage. Materials Chemistry Frontiers, 2020, 4, 1656-1663.	5.9	49
342	Generating H ⁺ in Catholyte and OH [–] in Anolyte: An Approach to Improve the Stability of Aqueous Zinc-Ion Batteries. ACS Energy Letters, 2021, 6, 684-686.	17.4	49

#	Article	IF	CITATIONS
343	Facile and Scalable Synthesis of Zn ₃ V ₂ O ₇ (OH) ₂ ·2H ₂ O Microflowers as a High-Performance Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 27707-27714.	8.0	48
344	One-dimensional nanomaterials for energy storage. Journal Physics D: Applied Physics, 2018, 51, 113002.	2.8	48
345	Intercalation pseudocapacitance of FeVO4•nH2O nanowires anode for high-energy and high-power sodium-ion capacitor. Nano Energy, 2020, 73, 104838.	16.0	48
346	Mesoporous VO ₂ nanowires with excellent cycling stability and enhanced rate capability for lithium batteries. RSC Advances, 2014, 4, 33332-33337.	3.6	47
347	Binding TiO ₂ -B nanosheets with N-doped carbon enables highly durable anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 8172-8179.	10.3	47
348	Zinc Pyrovanadate Nanoplates Embedded in Graphene Networks with Enhanced Electrochemical Performance. Industrial & Engineering Chemistry Research, 2016, 55, 2992-2999.	3.7	47
349	Aerosol synthesis of trivalent titanium doped titania/carbon composite microspheres with superior sodium storage performance. Nano Research, 2017, 10, 4351-4359.	10.4	47
350	Facile template-free synthesis of uniform carbon-confined V ₂ O ₃ hollow spheres for stable and fast lithium storage. Journal of Materials Chemistry A, 2018, 6, 6220-6224.	10.3	47
351	MoS2/MnO2 heterostructured nanodevices for electrochemical energy storage. Nano Research, 2018, 11, 2083-2092.	10.4	47
352	Realizing stable lithium and sodium storage with high areal capacity using novel nanosheet-assembled compact CaV4O9 microflowers. Nano Energy, 2018, 50, 606-614.	16.0	47
353	Wearable Textileâ€Based Coâ^'Zn Alkaline Microbattery with High Energy Density and Excellent Reliability. Small, 2020, 16, e2000293.	10.0	47
354	Mass Production of Monodisperse Carbon Microspheres with Sizeâ€Dependent Supercapacitor Performance via Aqueous Selfâ€Catalyzed Polymerization. ChemPlusChem, 2017, 82, 872-878.	2.8	46
355	Unprecedented and highly stable lithium storage capacity of (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture for high-performance Li-ion batteries. National Science Review, 2020, 7, 1046-1058.	9.5	46
356	Unveiling the role of surface P–O group in P-doped Co3O4 for electrocatalytic oxygen evolution by On-chip micro-device. Nano Energy, 2021, 83, 105748.	16.0	46
357	The Young's modulus of high-aspect-ratio carbon/carbon nanotube composite microcantilevers by experimental and modeling validation. Applied Physics Letters, 2015, 106, .	3.3	45
358	Bioinspired 1D Superparamagnetic Magnetite Arrays with Magnetic Field Perception. Advanced Materials, 2016, 28, 6952-6958.	21.0	45
359	Boosting the Deep Discharging/Charging Lithium Storage Performances of Li ₃ VO ₄ through Double-Carbon Decoration. ACS Applied Materials & Interfaces, 2018, 10, 23938-23944.	8.0	45
360	Rational Design of Ion Transport Paths at the Interface of Metal–Organic Framework Modified Solid Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 22930-22938.	8.0	45

#	Article	IF	CITATIONS
361	Nanoribbons and nanoscrolls intertwined three-dimensional vanadium oxide hydrogels for high-rate lithium storage at high mass loading level. Nano Energy, 2017, 40, 73-81.	16.0	44
362	Preparation and characterization of (PVP+V2O5) cathode for battery applications. Electrochemistry Communications, 2006, 8, 279-283.	4.7	43
363	Single-crystalline integrated 4H-SiC nanochannel array electrode: toward high-performance capacitive energy storage for robust wide-temperature operation. Materials Horizons, 2018, 5, 883-889.	12.2	43
364	Interchain-Expanded Vanadium Tetrasulfide with Fast Kinetics for Rechargeable Magnesium Batteries. ACS Applied Materials & Interfaces, 2019, 11, 31954-31961.	8.0	43
365	Fast, green microwave-assisted synthesis of single crystalline Sb2Se3 nanowires towards promising lithium storage. Journal of Energy Chemistry, 2019, 30, 27-33.	12.9	43
366	Novel Charging-Optimized Cathode for a Fast and High-Capacity Zinc-Ion Battery. ACS Applied Materials & amp; Interfaces, 2020, 12, 10420-10427.	8.0	43
367	Core–Shell MOFâ€inâ€MOF Nanopore Bifunctional Host of Electrolyte for Highâ€Performance Solidâ€State Lithium Batteries. Small Methods, 2021, 5, e2100508.	8.6	43
368	Conductivity and discharge characteristics of (PVC+NaClO4) polymer electrolyte systems. European Polymer Journal, 2006, 42, 3114-3120.	5.4	42
369	Interconnected Nanorods–Nanoflakes Li ₂ Co ₂ (MoO ₄) ₃ Framework Structure with Enhanced Electrochemical Properties for Supercapacitors. Advanced Energy Materials, 2015, 5, 1500060.	19.5	42
370	Lithium- and Magnesium-Storage Mechanisms of Novel Hexagonal NbSe ₂ . ACS Applied Materials & Interfaces, 2018, 10, 36988-36995.	8.0	42
371	High Energy Density Micro-Supercapacitor Based on a Three-Dimensional Bicontinuous Porous Carbon with Interconnected Hierarchical Pores. ACS Applied Materials & Interfaces, 2019, 11, 948-956.	8.0	42
372	Surface Gradient Ti-Doped MnO ₂ Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied Materials & Interfaces, 2018, 10, 44376-44384.	8.0	41
373	Rationally design lithiophilic surfaces toward highâ^'energy Lithium metal battery. Energy Storage Materials, 2021, 37, 40-46.	18.0	41
374	Synthesis and characterization of novel vanadium dioxide nanorods. Solid State Communications, 2004, 132, 513-516.	1.9	40
375	Synthesis and Field Emission Property of V2O5·nH2O Nanotube Arrays. Journal of Physical Chemistry C, 2007, 111, 8202-8205.	3.1	40
376	Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction. Nano Research, 2016, 9, 2445-2457.	10.4	40
377	Interwoven Nanowire Based Onâ€Chip Asymmetric Microsupercapacitor with High Integrability, Areal Energy, and Power Density. Advanced Energy Materials, 2020, 10, 2001873.	19.5	40
378	Origin of the extra capacity in nitrogen-doped porous carbon nanofibers for high-performance potassium ion batteries. Journal of Materials Chemistry A, 2020, 8, 18079-18086.	10.3	40

#	Article	IF	CITATIONS
379	Confining Ultrafine MoO ₂ in a Carbon Matrix Enables Hybrid Li Ion and Li Metal Storage. ACS Applied Materials & Interfaces, 2020, 12, 40648-40654.	8.0	40
380	FeN _x and γ-Fe ₂ O ₃ co-functionalized hollow graphitic carbon nanofibers for efficient oxygen reduction in an alkaline medium. Journal of Materials Chemistry A, 2020, 8, 6076-6082.	10.3	40
381	Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes. Nano Research, 2021, 14, 3174-3187.	10.4	40
382	A Strainâ€Relaxation Red Phosphorus Freestanding Anode for Nonâ€Aqueous Potassium Ion Batteries. Advanced Energy Materials, 2022, 12, .	19.5	40
383	Fabrication of Novel Vanadium Dioxide Nanorods as Cathode Material for Rechargeable Lithium Batteries. Chemistry Letters, 2004, 33, 1366-1367.	1.3	39
384	Ultralong H ₂ V ₃ O ₈ nanowire bundles as a promising cathode for lithium batteries. New Journal of Chemistry, 2014, 38, 2075-2080.	2.8	39
385	Vertically stacked holey graphene/polyaniline heterostructures with enhanced energy storage for on-chip micro-supercapacitors. Nano Research, 2016, 9, 1012-1021.	10.4	39
386	Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries. Nano Research, 2019, 12, 205-210.	10.4	39
387	Revealing the Origin of Highly Efficient Polysulfide Anchoring and Transformation on Anionâ€6ubstituted Vanadium Nitride Host. Advanced Functional Materials, 2021, 31, 2008034.	14.9	39
388	Flexible Nanowire Cathode Membrane with Gradient Interfaces and Rapid Electron/Ion Transport Channels for Solid‣tate Lithium Batteries. Advanced Energy Materials, 2021, 11, 2100026.	19.5	39
389	Achieving rapid Li-ion insertion kinetics in TiO ₂ mesoporous nanotube arrays for bifunctional high-rate energy storage smart windows. Nanoscale, 2018, 10, 3254-3261.	5.6	38
390	Insight into pre-sodiation in Na3V2(PO4)2F3/C @ hard carbon full cells for promoting the development of sodium-ion battery. Chemical Engineering Journal, 2021, 413, 127565.	12.7	38
391	Ni/Fe based bimetallic coordination complexes with rich active sites for efficient oxygen evolution reaction. Chemical Engineering Journal, 2021, 405, 126959.	12.7	38
392	Optical, electrical and discharge profiles for (PVCÂ+ÂNaIO4) polymer electrolytes. Journal of Applied Electrochemistry, 2006, 36, 1051-1056.	2.9	37
393	Selected-control hydrothermal synthesis and formation mechanism of 1D ammonium vanadate. Journal of Solid State Chemistry, 2008, 181, 652-657.	2.9	37
394	Pyrolyzed carbon with embedded NiO/Ni nanospheres for applications in microelectrodes. RSC Advances, 2016, 6, 43436-43441.	3.6	37
395	Enhancement of Photovoltaic Performance by Utilizing Readily Accessible Hole Transporting Layer of Vanadium(V) Oxide Hydrate in a Polymer–Fullerene Blend Solar Cell. ACS Applied Materials & Interfaces, 2016, 8, 11658-11666.	8.0	37
396	Interconnected Vertically Stacked 2D-MoS ₂ for Ultrastable Cycling of Rechargeable Li-Ion Battery. ACS Applied Materials & Interfaces, 2019, 11, 20762-20769.	8.0	37

#	Article	IF	CITATIONS
397	Spray-pyrolysis-assisted synthesis of yolk@shell anatase with rich oxygen vacancies for efficient sodium storage. Journal of Materials Chemistry A, 2019, 7, 6740-6746.	10.3	37
398	Electrochemical in situ X-ray probing in lithium-ion and sodium-ion batteries. Journal of Materials Science, 2017, 52, 3697-3718.	3.7	36
399	Facet-Selective Deposition of FeO _{<i>x</i>} on α-MoO ₃ Nanobelts for Lithium Storage. ACS Applied Materials & Interfaces, 2017, 9, 39425-39431.	8.0	36
400	Rational Design of a Redox-Active Nonaqueous Electrolyte for a High-Energy-Density Supercapacitor Based on Carbon Nanotubes. ACS Sustainable Chemistry and Engineering, 2019, 7, 7728-7735.	6.7	36
401	Fast and stable Mg2+ intercalation in a high voltage NaV2O2(PO4)2F/rGO cathode material for magnesium-ion batteries. Science China Materials, 2020, 63, 1651-1662.	6.3	36
402	Three-Dimensional Porous Nitrogen-Doped Carbon Nanosheet with Embedded Ni _{<i>x</i>} Co _{3–<i>x</i>} S ₄ Nanocrystals for Advanced Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 9181-9189.	8.0	36
403	Gradient sulfur fixing separator with catalytic ability for stable lithium sulfur battery. Chemical Engineering Journal, 2021, 422, 130107.	12.7	36
404	Amine-Wetting-Enabled Dendrite-Free Potassium Metal Anode. ACS Nano, 2022, 16, 7291-7300.	14.6	36
405	General oriented assembly of uniform carbon-confined metal oxide nanodots on graphene for stable and ultrafast lithium storage. Materials Horizons, 2018, 5, 78-85.	12.2	35
406	Boosting oxygen reduction activity with low-temperature derived high-loading atomic cobalt on nitrogen-doped graphene for efficient Zn–air batteries. Chemical Communications, 2019, 55, 334-337.	4.1	35
407	Strongly Coupled Pyridineâ€V ₂ O ₅ · <i>n</i> H ₂ O Nanowires with Intercalation Pseudocapacitance and Stabilized Layer for High Energy Sodium Ion Capacitors. Small, 2019, 15, e1900379.	10.0	35
408	Cobalt decorated nitrogen-doped carbon bowls as efficient electrocatalysts for the oxygen reduction reaction. Chemical Communications, 2020, 56, 4488-4491.	4.1	35
409	Three-dimensional graphene-supported nickel disulfide nanoparticles promise stable and fast potassium storage. Nanoscale, 2020, 12, 8255-8261.	5.6	35
410	Ligand and Anion Coâ€Leaching Induced Complete Reconstruction of Polyoxomolybdateâ€Organic Complex Oxygenâ€Evolving Preâ€Catalysts. Advanced Functional Materials, 2021, 31, 2101792.	14.9	35
411	Ultrathin ZrO2 coating layer regulates Zn deposition and raises long-life performance of aqueous Zn batteries. Materials Today Energy, 2022, 28, 101056.	4.7	35
412	Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective. MRS Communications, 2017, 7, 152-165.	1.8	34
413	Facile electrospinning formation of carbon-confined metal oxide cube-in-tube nanostructures for stable lithium storage. Chemical Communications, 2017, 53, 8284-8287.	4.1	34
414	Recent Advances in Nanowire-Biosystem Interfaces: From Chemical Conversion, Energy Production to Electrophysiology. CheM, 2018, 4, 1538-1559.	11.7	34

#	Article	IF	CITATIONS
415	Waterâ€Pillared Sodium Vanadium Bronze Nanowires for Enhanced Rechargeable Magnesium Ion Storage. Small, 2020, 16, e2000741.	10.0	34
416	One-dimensional nanomaterials of vanadium and molybdenum oxides. Journal of Physics and Chemistry of Solids, 2006, 67, 896-902.	4.0	33
417	A N-self-doped carbon catalyst derived from pig blood for oxygen reduction with high activity and stability. Electrochimica Acta, 2015, 160, 139-144.	5.2	33
418	Porous CaFe ₂ O ₄ as a promising lithium ion battery anode: a trade-off between high capacity and long-term stability. Nanoscale, 2018, 10, 12963-12969.	5.6	33
419	High-Performance Na–O ₂ Batteries Enabled by Oriented NaO ₂ Nanowires as Discharge Products. Nano Letters, 2018, 18, 3934-3942.	9.1	33
420	On-chip micro/nano devices for energy conversion and storage. Nano Today, 2019, 28, 100764.	11.9	33
421	Uniform zeolitic imidazolate framework coating via in situ recoordination for efficient polysulfide trapping. Energy Storage Materials, 2019, 23, 55-61.	18.0	33
422	<i>In situ</i> monitoring of the electrochemically induced phase transition of thermodynamically metastable 1T-MoS ₂ at nanoscale. Nanoscale, 2020, 12, 9246-9254.	5.6	33
423	Pancake-Like MOF Solid-State Electrolytes with Fast Ion Migration for High-Performance Sodium Battery. Nano-Micro Letters, 2021, 13, 105.	27.0	33
424	Universal multifunctional hydrogen bond network construction strategy for enhanced aqueous Zn2+/proton hybrid batteries. Nano Energy, 2022, 100, 107539.	16.0	33
425	Improved cycling stability of nanostructured electrode materials enabled by prelithiation. Journal of Materials Research, 2010, 25, 1413-1420.	2.6	32
426	Novel NaTi2(PO4)3 nanowire clusters as high performance cathodes for Mg-Na hybrid-ion batteries. Nano Energy, 2019, 55, 526-533.	16.0	32
427	Integration of VS2 nanosheets into carbon for high energy density micro-supercapacitor. Journal of Alloys and Compounds, 2020, 823, 151769.	5.5	32
428	Introducing Na2SO4 in aqueous ZnSO4 electrolyte realizes superior electrochemical performance in zinc-ion hybrid capacitor. Materials Today Energy, 2020, 18, 100529.	4.7	32
429	Ultra-fast and high-stable near-pseudocapacitance intercalation cathode for aqueous potassium-ion storage. Nano Energy, 2020, 77, 105069.	16.0	32
430	Novel soft solution synthesis and characterization of submicromic LiCoVO4. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 100, 221-224.	3.5	31
431	Field Emission from V ₂ O ₅ · <i>n</i> H ₂ O Nanorod Arrays. Journal of Physical Chemistry C, 2008, 112, 2262-2265.	3.1	31
432	In operando observation of temperature-dependent phase evolution in lithium-incorporation olivine cathode. Nano Energy, 2016, 22, 406-413.	16.0	31

#	Article	IF	CITATIONS
433	Hollow spherical LiNi0.5Mn1.5O4 built from polyhedra with high-rate performance via carbon nanotube modification. Science China Materials, 2016, 59, 95-103.	6.3	31
434	Micrometer‣ized Porous Fe ₂ N/C Bulk for Highâ€Arealâ€Capacity and Stable Lithium Storage. Small, 2019, 15, e1803572.	10.0	31
435	Activated carbon clothes for wide-voltage high-energy-density aqueous symmetric supercapacitors. Chinese Chemical Letters, 2020, 31, 1620-1624.	9.0	31
436	Stabilizing conversion reaction electrodes by MOF derived N-doped carbon shell for highly reversible lithium storage. Nano Energy, 2020, 73, 104758.	16.0	31
437	Surface pseudocapacitance of mesoporous Mo3N2 nanowire anode toward reversible high-rate sodium-ion storage. Journal of Energy Chemistry, 2021, 55, 295-303.	12.9	31
438	Porous Ni0.14Mn0.86O1.43 hollow microspheres as high-performing anodes for lithium-ion batteries. Journal of Power Sources, 2015, 291, 156-162.	7.8	30
439	Robust LiTi ₂ (PO ₄) ₃ microflowers as high-rate and long-life cathodes for Mg-based hybrid-ion batteries. Journal of Materials Chemistry A, 2017, 5, 13950-13956.	10.3	30
440	Rapid, all dry microfabrication of three-dimensional Co3O4/Pt nanonetworks for high-performance microsupercapacitors. Nanoscale, 2017, 9, 11765-11772.	5.6	30
441	In situ nitrogen-doped helical mesoporous carbonaceous nanotubes for superior-high lithium anodic performance. Carbon, 2018, 130, 599-606.	10.3	30
442	Polyoxomolybdate-derived carbon-encapsulated multicomponent electrocatalysts for synergistically boosting hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 17874-17881.	10.3	30
443	Fe ₂ VO ₄ Hierarchical Porous Microparticles Prepared via a Facile Surface Solvation Treatment for Highâ€Performance Lithium and Sodium Storage. Small, 2019, 15, e1804706.	10.0	30
444	Multi-electron reactions of vanadium-based nanomaterials for high-capacity lithium batteries: challenges and opportunities. Materials Today Nano, 2020, 10, 100073.	4.6	30
445	A porous nickel cyclotetraphosphate nanosheet as a new acid-stable electrocatalyst for efficient hydrogen evolution. Nanoscale, 2018, 10, 9856-9861.	5.6	29
446	Graphene oxide-wrapped dipotassium terephthalate hollow microrods for enhanced potassium storage. Chemical Communications, 2018, 54, 11029-11032.	4.1	29
447	Recent Advances in Nanowireâ€Based, Flexible, Freestanding Electrodes for Energy Storage. Chemistry - A European Journal, 2018, 24, 18307-18321.	3.3	29
448	Direct growth of an economic green energy storage material: a monocrystalline jarosite-KFe ₃ (SO ₄) ₂ (OH) ₆ -nanoplates@rGO hybrid as a superior lithium-ion battery cathode. Journal of Materials Chemistry A, 2016, 4, 3735-3742.	10.3	28
449	Advanced Li-Se S battery system: Electrodes and electrolytes. Journal of Materials Science and Technology, 2020, 55, 1-15.	10.7	28
450	A three-dimensional nitrogen-doped graphene framework decorated with an atomic layer deposited ultrathin V ₂ O ₅ layer for lithium sulfur batteries with high sulfur loading. Journal of Materials Chemistry A, 2020, 8, 12106-12113.	10.3	28

#	Article	IF	CITATIONS
451	In-situ surface self-reconstruction in ternary transition metal dichalcogenide nanorod arrays enables efficient electrocatalytic oxygen evolution. Journal of Energy Chemistry, 2021, 55, 10-16.	12.9	28
452	Ultrathin Metal Silicate Hydroxide Nanosheets with Moderate Metal–Oxygen Covalency Enables Efficient Oxygen Evolution. Energy and Environmental Materials, 2022, 5, 231-237.	12.8	28
453	Open-Structured Nanotubes with Three-Dimensional Ion-Accessible Pathways for Enhanced Li ⁺ Conductivity in Composite Solid Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 13183-13190.	8.0	28
454	MOF derived TiO2 with reversible magnesium pseudocapacitance for ultralong-life Mg metal batteries. Chemical Engineering Journal, 2021, 418, 128491.	12.7	28
455	A high-capacity polyaniline-intercalated layered vanadium oxide for aqueous ammonium-ion batteries. Chemical Communications, 2022, 58, 791-794.	4.1	28
456	CaV ₆ O ₁₆ ·2.8H ₂ O with Ca ²⁺ Pillar and Water Lubrication as a Highâ€Rate and Longâ€Life Cathode Material for Caâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	14.9	28
457	Novel layered Li ₃ V ₂ (PO ₄) ₃ /rGO&C sheets as high-rate and long-life lithium ion battery cathodes. Chemical Communications, 2016, 52, 8730-8732.	4.1	27
458	Microstructuring of carbon/tin quantum dots via a novel photolithography and pyrolysis-reduction process. Nano Research, 2017, 10, 3743-3753.	10.4	27
459	Low-crystallinity molybdenum sulfide nanosheets assembled on carbon nanotubes for long-life lithium storage: Unusual electrochemical behaviors and ascending capacities. Applied Surface Science, 2017, 392, 297-304.	6.1	27
460	Compact Sn/SnO2 microspheres with gradient composition for high volumetric lithium storage. Energy Storage Materials, 2020, 25, 376-381.	18.0	27
461	Building carbon cloth-based dendrite-free potassium metal anodes for potassium metal pouch cells. Journal of Materials Chemistry A, 2021, 9, 23046-23054.	10.3	27
462	Facile Synthesis of Bi ₂ S ₃ @SiO ₂ Core-Shell Microwires as High-Performance Anode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A6110-A6115.	2.9	26
463	Pseudocapacitive layered birnessite sodium manganese dioxide for high-rate non-aqueous sodium ion capacitors. Journal of Materials Chemistry A, 2018, 6, 12259-12266.	10.3	26
464	Hierarchical Mn ₃ O ₄ /Graphene Microflowers Fabricated via a Selective Dissolution Strategy for Alkali-Metal-Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 14120-14125.	8.0	26
465	Highly Dispersed Mo ₂ C Nanodots in Carbon Nanocages Derived from Moâ€Based Xerogel: Efficient Electrocatalysts for Hydrogen Evolution. Small Methods, 2021, 5, e2100334.	8.6	26
466	Nanoâ€Sized Niobium Tungsten Oxide Anode for Advanced Fastâ€Charge Lithiumâ€lon Batteries. Small, 2022, 18, e2107365.	10.0	26
467	Advances and perspectives on one-dimensional nanostructure electrode materials for potassium-ion batteries. Materials Today, 2022, 56, 114-134.	14.2	26
468	Graphene oxide-decorated Fe2(MoO4)3 microflowers as a promising anode for lithium and sodium storage. Nano Research, 2018, 11, 1285-1293.	10.4	25

#	Article	IF	CITATIONS
469	Langmuir–Blodgett Nanowire Devices for In Situ Probing of Zincâ€lon Batteries. Small, 2019, 15, e1902141.	10.0	25
470	3D Nitrogenâ€Doped Graphene Encapsulated Metallic Nickel–Iron Alloy Nanoparticles for Efficient Bifunctional Oxygen Electrocatalysis. Chemistry - A European Journal, 2020, 26, 4044-4051.	3.3	25
471	Strain engineering by atomic lattice locking in P2-type layered oxide cathode for high-voltage sodium-ion batteries. Nano Energy, 2020, 76, 105061.	16.0	25
472	Interwoven scaffolded porous titanium oxide nanocubes/carbon nanotubes framework for high-performance sodium-ion battery. Journal of Energy Chemistry, 2021, 59, 38-46.	12.9	25
473	Catalytic redox mediators for non-aqueous Li-O2 battery. Energy Storage Materials, 2021, 43, 97-119.	18.0	24
474	Polydopamine-assisted in-situ formation of dense MOF layer on polyolefin separator for synergistic enhancement of lithium-sulfur battery. Nano Research, 2022, 15, 8048-8055.	10.4	24
475	Gradient-temperature hydrothermal fabrication of hierarchical Zn ₂ SnO ₄ hollow boxes stimulated by thermodynamic phase transformation. Journal of Materials Chemistry A, 2016, 4, 14095-14100.	10.3	23
476	Bubble-templated synthesis of Fe2(MoO4)3 hollow hierarchical microsphere with superior low-temperature behavior and high areal capacity for lithium ion batteries. Electrochimica Acta, 2019, 311, 192-200.	5.2	23
477	Carbon decorated Li3V2(PO4)3 for high-rate lithium-ion batteries: Electrochemical performance and charge compensation mechanism. Journal of Energy Chemistry, 2021, 53, 124-131.	12.9	23
478	Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen reduction. Journal of Materials Science and Technology, 2021, 66, 186-192.	10.7	23
479	Electrochemically Exfoliating MoS ₂ into Atomically Thin Planarâ€Stacking Through a Selective Lateral Reaction Pathway. Advanced Functional Materials, 2021, 31, 2007840.	14.9	23
480	Oxalate-assisted formation of uniform carbon-confined SnO ₂ nanotubes with enhanced lithium storage. Chemical Communications, 2017, 53, 9542-9545.	4.1	22
481	Na–Mn–O@C yolk–shell nanorods as an ultrahigh electrochemical performance anode for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 18509-18517.	10.3	22
482	Novel hollow Ni0.33Co0.67Se nanoprisms for high capacity lithium storage. Nano Research, 2019, 12, 1371-1374.	10.4	22
483	Phenylenediamine-formaldehyde chemistry derived N-doped hollow carbon spheres for high-energy-density supercapacitors. Chinese Chemical Letters, 2021, 32, 184-189.	9.0	22
484	Gradient trilayer solid-state electrolyte with excellent interface compatibility for high-voltage lithium batteries. Chemical Engineering Journal, 2022, 441, 136077.	12.7	22
485	Metastable amorphous chromium-vanadium oxide nanoparticles with superior performance as a new lithium battery cathode. Nano Research, 2014, 7, 1604-1612.	10.4	21
486	Three-Dimensional LiMnPO ₄ ·Li ₃ V ₂ (PO ₄) ₃ /C Nanocomposite as a Bicontinuous Cathode for High-Rate and Long-Life Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 17527-17534.	8.0	21

#	Article	IF	CITATIONS
487	KTi ₂ (PO ₄) ₃ with Large Ion Diffusion Channel for Highâ€Efficiency Sodium Storage. Advanced Energy Materials, 2017, 7, 1700247.	19.5	21
488	A Synergistic Naâ€Mnâ€O Composite Cathodes for Highâ€Capacity Naâ€Ion Storage. Advanced Energy Materials, 2018, 8, 1802180.	' 19.5	21
489	Phenazine anodes for ultralongcycle-life aqueous rechargeable batteries. Journal of Materials Chemistry A, 2020, 8, 26013-26022.	10.3	21
490	A "MOFs plus ZIFs―Strategy toward Ultrafine Co Nanodots Confined into Superficial N-Doped Carbon Nanowires for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2020, 12, 54545-54552.	8.0	21
491	Activating Inert Sites in Cobalt Silicate Hydroxides for Oxygen Evolution through Atomically Doping. Energy and Environmental Materials, 2022, 5, 655-661.	12.8	21
492	Hierarchical nanowires for high-performance electrochemical energy storage. Frontiers of Physics, 2014, 9, 303-322.	5.0	20
493	Amorphous CuSnO ₃ nanospheres anchored on interconnected carbon networks for use as novel anode materials for high-performance sodium ion batteries. Inorganic Chemistry Frontiers, 2018, 5, 2756-2762.	6.0	20
494	Amine-assisted synthesis of FeS@N-C porous nanowires for highly reversible lithium storage. Nano Research, 2018, 11, 6206-6216.	10.4	20
495	Heterogeneous Contraction-Mediated Asymmetric Carbon Colloids. , 2019, 1, 290-296.		20
496	Unveiling the microscopic origin of asymmetric phase transformations in (de)sodiated Sb2Se3 with in situ transmission electron microscopy. Nano Energy, 2020, 77, 105299.	16.0	20
497	Hollow SiO _{<i>x</i>} /C Microspheres with Semigraphitic Carbon Coating as the "Lithium Host―for Dendrite-Free Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 3905-3912.	5.1	20
498	Mo ₂ C Nanoparticles Embedded in Carbon Nanowires with Surface Pseudocapacitance Enables Highâ€Energy and Highâ€Power Sodium Ion Capacitors. Small, 2022, 18, e2200805.	10.0	20
499	Nanowire Electrodes for Advanced Lithium Batteries. Frontiers in Energy Research, 2014, 2, .	2.3	19
500	Facile synthesis of MoO 2 @C nanoflowers as anode materials for sodium-ion batteries. Materials Research Bulletin, 2017, 94, 122-126.	5.2	19
501	New anatase phase VTi _{2.6} O _{7.2} ultrafine nanocrystals for high-performance rechargeable magnesium-based batteries. Journal of Materials Chemistry A, 2018, 6, 13901-13907.	10.3	19
502	In Situ Visualization of Structural Evolution and Fissure Breathing in (De)lithiated H ₂ V ₃ O ₈ Nanorods. ACS Energy Letters, 2019, 4, 2081-2090.	17.4	19
503	Self-adaptive FeP@C nanocages for reversible and long-term lithium-ion batteries. Chemical Engineering Journal, 2020, 395, 125124.	12.7	19
504	In-situ selective surface engineering of graphene micro-supercapacitor chips. Nano Research, 2022, 15, 1492-1499.	10.4	19

#	Article	IF	CITATIONS
505	Effect of modification by poly(ethylene-oxide) on the reversibility of Li insertion/extraction in MoO3 nanocomposite films. Microelectronic Engineering, 2003, 66, 199-205.	2.4	18
506	Multiplexed Free-Standing Nanowire Transistor Bioprobe for Intracellular Recording: A General Fabrication Strategy. Nano Letters, 2014, 14, 3602-3607.	9.1	18
507	The Capturing of Ionized Oxygen in Sodium Vanadium Oxide Nanorods Cathodes under Operando Conditions. Advanced Functional Materials, 2016, 26, 6555-6562.	14.9	18
508	In Operando Probing of Sodium-Incorporation in NASICON Nanomaterial: Asymmetric Reaction and Electrochemical Phase Diagram. Chemistry of Materials, 2017, 29, 8057-8064.	6.7	18
509	Microporeâ€Rich Yolkâ€Shell Nâ€doped Carbon Spheres: An Ideal Electrode Material for Highâ€Energy Capacitive Energy Storage. ChemSusChem, 2021, 14, 1756-1762.	6.8	18
510	Biomimetic brain-like nanostructures for solid polymer electrolytes with fast ion transport. Science China Materials, 2022, 65, 1476-1484.	6.3	18
511	Novel Li ₂ MnO ₃ nanowire anode with internal Li-enrichment for use in a Li-ion battery. Nanoscale, 2014, 6, 8124-8129.	5.6	17
512	A Bowknot-like RuO ₂ quantum dots@V ₂ O ₅ cathode with largely improved electrochemical performance. Physical Chemistry Chemical Physics, 2014, 16, 18680-18685.	2.8	17
513	Electric field and photoelectrical effect bi-enhanced hydrogen evolution reaction. Nano Research, 2018, 11, 3205-3212.	10.4	17
514	Escherichia coli adaptation and response to exposure to heavy atmospheric pollution. Scientific Reports, 2019, 9, 10879.	3.3	17
515	Carboxyl functionalized carbon incorporation of stacked ultrathin NiO nanosheets: topological construction and superior lithium storage. Nanoscale, 2019, 11, 7588-7594.	5.6	17
516	Electrochemical studies on PVC/PVdF blend-based polymer electrolytes. Journal of Solid State Electrochemistry, 2007, 11, 543-548.	2.5	16
517	Fabrication and Properties of VO <i>_x</i> -Based Nanorods. Journal of Physical Chemistry C, 2008, 112, 423-429.	3.1	16
518	A Stable CaV ₄ O ₉ ÂAnode Promises Nearâ€Zero Volume Change and Highâ€Capacity Lithium Storage. Advanced Energy Materials, 2021, 11, 2003612.	19.5	16
519	New Insights into Phaseâ€Mechanism Relationship of Mg _x MnO ₂ Nanowires in Aqueous Zinc″on Batteries. Small, 2022, 18, e2107743.	10.0	16
520	Eutectic Electrolyte with Unique Solvation Structure for Highâ€Performance Zincâ€Ion Batteries. Angewandte Chemie, 2022, 134, .	2.0	16
521	Interconnected LiCuVO ₄ networks with in situ Cu generation as high-performance lithium-ion battery anode. Physical Chemistry Chemical Physics, 2017, 19, 13341-13347.	2.8	15
522	Recent advances in TiO2 nanoarrays/graphene for water treatment and energy conversion/storage. Science China Materials, 2019, 62, 325-340.	6.3	15

#	Article	IF	CITATIONS
523	Hierarchical Bimetallic Selenide Nanosheetâ€Constructed Nanotubes for Efficient Electrocatalytic Water Oxidation. ChemElectroChem, 2019, 6, 331-335.	3.4	15
524	A fast ionic conductor and stretchable solid electrolyte artificial interphase layer for Li metal protection in lithium batteries. Journal of Alloys and Compounds, 2020, 843, 155839.	5.5	15
525	Novel layered K0.7Mn0.7Ni0.3O2 cathode material with enlarged diffusion channels for high energy density sodium-ion batteries. Science China Materials, 2020, 63, 1163-1170.	6.3	15
526	Ultrathin Cobalt Phthalocyanine@Graphene Oxide Layer-Modified Separator for Stable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 60046-60053.	8.0	15
527	Reaction-crystallization growth and electrical property of ammonium decavanadate nanorods. Materials Letters, 2008, 62, 1458-1461.	2.6	14
528	Batteries: Effect of Carbon Matrix Dimensions on the Electrochemical Properties of Na3V2(PO4)3Nanograins for High-Performance Symmetric Sodium-Ion Batteries (Adv. Mater. 21/2014). Advanced Materials, 2014, 26, 3358-3358.	21.0	14
529	Stepwise chelation-etching synthesis of carbon-confined ultrafine SnO2 nanoparticles for stable sodium storage. Chemical Communications, 2018, 54, 1469-1472.	4.1	14
530	Ultrathin nanobelts-assembled Chinese knot-like 3D TiO2 for fast and stable lithium storage. Nano Research, 2018, 11, 2116-2128.	10.4	14
531	Understanding the electrochemical reaction mechanism of VS ₂ nanosheets in lithium-ion cells by multiple <i>in situ</i> and <i>ex situ</i> x-ray spectroscopy. Journal Physics D: Applied Physics, 2018, 51, 494001.	2.8	14
532	Niobium oxyphosphate nanosheet assembled two-dimensional anode material for enhanced lithium storage. Journal of Energy Chemistry, 2021, 53, 268-275.	12.9	14
533	On the irreversible sodiation of tin disulfide. Nano Energy, 2021, 79, 105458.	16.0	14
534	LOW-COST SYNTHESIS OF NOVEL VANADIUM DIOXIDE NANORODS. International Journal of Nanoscience, 2004, 03, 225-231.	0.7	13
535	Hybrid NiCo ₂ O ₄ â€NiCo ₂ S ₄ Nanoflakes as Highâ€Performance Anode Materials for Lithiumâ€Ion Batteries. ChemistrySelect, 2018, 3, 2315-2320.	1.5	13
536	Ultrastable Highâ€Energy Onâ€Chip Nickel–Bismuth Microbattery Powered by Crystalline Bi Anode and Ni–Co Hydroxide Cathode. Energy Technology, 2019, 7, 1900144.	3.8	13
537	Inward lithium-ion breathing of hollow carbon spheres-encapsulated Fe3O4@C nanodisc with superior lithium ion storage performance. Journal of Alloys and Compounds, 2019, 800, 16-22.	5.5	13
538	Scalable microfabrication of three-dimensional porous interconnected graphene scaffolds with carbon spheres for high-performance all carbon-based micro-supercapacitors. Journal of Materiomics, 2019, 5, 303-312.	5.7	13
539	Co(OH)2@Co electrode for efficient alkaline anode based on Co2+/Co° redox mechanism. Energy Storage Materials, 2019, 21, 372-377.	18.0	13
540	Structural properties and electrochemical performance of different polymorphs of Nb2O5 in magnesium-based batteries. Journal of Energy Chemistry, 2021, 58, 586-592.	12.9	13

#	Article	IF	CITATIONS
541	Active Site Identification and Interfacial Design of a MoP/N-Doped Carbon Catalyst for Efficient Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 5486-5492.	5.1	13
542	A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 1999-2006.	4.9	13
543	Flexible three-dimensional-networked iron vanadate nanosheet arrays/carbon cloths as high-performance cathodes for magnesium ion batteries. Science China Materials, 2022, 65, 2197-2206.	6.3	13
544	Synergistic Effect of Core-Shell Heterogeneous V2O5@MV6O15 (M = Na, K) Nanoparticles for Enhanced Lithium Storage Performance. Electrochimica Acta, 2017, 254, 262-268.	5.2	12
545	A Crystalline/Amorphous Cobalt(II,III) Oxide Hybrid Electrocatalyst for Lithium–Air Batteries. Energy Technology, 2017, 5, 568-579.	3.8	12
546	Illumining phase transformation dynamics of vanadium oxide cathode by multimodal techniques under operando conditions. Nano Research, 2019, 12, 905-910.	10.4	12
547	Ternary TiO ₂ /SiO _x @C nanocomposite derived from a novel titanium–silicon MOF for high-capacity and stable lithium storage. Chemical Communications, 2020, 56, 2751-2754.	4.1	12
548	Three‣ayer Structured SnO ₂ @C@TiO ₂ Hollow Spheres for Highâ€Performance Sodium Storage. Energy and Environmental Materials, 2021, 4, 428-433.	12.8	12
549	Regulating Latticeâ€Waterâ€Adsorbed Ions to Optimize Intercalation Potential in 3D Prussian Blue Based Multiâ€ion Microbattery. Small, 2021, 17, e2007791.	10.0	12
550	<i>Batteries & Supercaps</i> : Beyond Lithiumâ€ŀon Batteries. Batteries and Supercaps, 2021, 4, 1036-1038.	4.7	12
551	<scp>ZIF</scp> â€Mediated Anchoring of Co species on Nâ€doped CarbonÂNanorods as an Efficient Cathode Catalyst for Znâ€Air Batteries. Energy and Environmental Materials, 2023, 6, .	12.8	12
552	General and precise carbon confinement of functional nanostructures derived from assembled metal–phenolic networks for enhanced lithium storage. Journal of Materials Chemistry A, 2018, 6, 18605-18614.	10.3	11
553	Encapsulation of Na ₄ MnV(PO ₄) ₃ in robust dual-carbon framework rendering high-energy, durable sodium storage. JPhys Energy, 2020, 2, 025003.	5.3	11
554	3D-printed interdigital electrodes for electrochemical energy storage devices. Journal of Materials Research, 2021, 36, 4489-4507.	2.6	11
555	A Durable Ni–Zn Microbattery with Ultrahighâ€Rate Capability Enabled by In Situ Reconstructed Nanoporous Nickel with Epitaxial Phase. Small, 2021, 17, e2103136.	10.0	11
556	In situ construction of amorphous hierarchical iron oxyhydroxide nanotubes via selective dissolution-regrowth strategy for enhanced lithium storage. Science China Materials, 2020, 63, 1993-2001.	6.3	11
557	Vanadium-based nanowires for sodium-ion batteries. Nanotechnology, 2019, 30, 192001.	2.6	10
558	One-step electrodeposited MnxCo1â^'x(OH)2 nanosheet arrays as cathode for asymmetric on-chip micro-supercapacitors. Applied Physics Letters, 2019, 114, 223903.	3.3	10

#	Article	IF	CITATIONS
559	Co 0.5 Ni 0.5 MoO 4 Doubleâ€Shelled Hollow Spheres with Enhanced Electrochemical Performance for Supercapacitors and Lithiumâ€Ion Batteries. Energy Technology, 2019, 7, 1801160.	3.8	10
560	Methanol-derived high-performance Na ₃ V ₂ (PO ₄) ₃ /C: from kilogram-scale synthesis to pouch cell safety detection. Nanoscale, 2020, 12, 21165-21171.	5.6	10
561	Bilayered microelectrodes based on electrochemically deposited MnO ₂ /polypyrrole towards fast charge transport kinetics for micro-supercapacitors. RSC Advances, 2020, 10, 18245-18251.	3.6	10
562	Solvent-Free Encapsulation of Ultrafine SnO ₂ Nanoparticles in N-Doped Carbon for High-Capacity and Durable Lithium Storage. ACS Applied Energy Materials, 2021, 4, 6277-6283.	5.1	10
563	Advances in Understanding the Electrocatalytic Reconstruction Chemistry of Coordination Compounds. Small, 2021, 17, e2100629.	10.0	10
564	Influence of surface modification on structure and electrochemical performance of LiNi0.5Co0.5VO4. Solid State Ionics, 2003, 161, 205-208.	2.7	9
565	Electrochemical Nanowire Devices for Energy Storage. IEEE Nanotechnology Magazine, 2014, 13, 10-15.	2.0	9
566	3D nonlinear photolithography of Tin oxide ceramics via femtosecond laser. Science China Materials, 2021, 64, 1477-1484.	6.3	9
567	Subâ€Nanometer Confined Ions and Solvent Molecules Intercalation Capacitance in Microslits of 2D Materials. Small, 2021, 17, e2104649.	10.0	9
568	Anchoring ultra-small Mo ₂ C nanocrystals on honeycomb-structured N-doped carbon spheres for efficient hydrogen evolution. Chemical Communications, 2022, 58, 5269-5272.	4.1	9
569	Chemical cross-linking and mechanically reinforced carbon network constructed by graphene boosts potassium ion storage. Nano Research, 2022, 15, 9019-9025.	10.4	9
570	A high energy density hybrid magnesium–lithium ion battery based on LiV3O8@GO cathode. Electrochimica Acta, 2019, 320, 134556.	5.2	8
571	Electron cloud migration effect-induced lithiophobicity/lithiophilicity transformation for dendrite-free lithium metal anodes. Nanoscale, 2021, 13, 3027-3035.	5.6	8
572	Interfacial and Vacancies Engineering of Copper Nickel Sulfide for Enhanced Oxygen Reduction and Alcohols Oxidation Activity. Energy and Environmental Materials, 2023, 6, .	12.8	8
573	Pseudocapacitive Grapheneâ€Wrapped Porous VO ₂ Microspheres for Ultrastable and Ultrahighâ€Rate Sodiumâ€ion Storage. ChemElectroChem, 2019, 6, 1400-1406.	3.4	7
574	Branched Mesoporous TiO2 Mesocrystals by Epitaxial Assembly of Micelles for Photocatalysis. Cell Reports Physical Science, 2020, 1, 100081.	5.6	7
575	Constructing Three-Dimensional Macroporous TiO ₂ Microspheres with Enhanced Pseudocapacitive Lithium Storage under Deep Discharging/Charging Conditions. ACS Applied Materials & Interfaces, 2021, 13, 16528-16535.	8.0	7
576	Sodium vanadium oxides: From nanostructured design to high-performance energy storage materials. Journal of Materials Science and Technology, 2022, 121, 80-92.	10.7	7

#	Article	IF	CITATIONS
577	Towards a Stable Layered Vanadium Oxide Cathode for Highâ€Capacity Calcium Batteries. Small, 2022, 18, .	10.0	7
578	Tailoring Iron Oxide Nanostructures for High-Capacity Lithium Storage. General Chemistry, 2017, 3, 172-181.	0.6	6
579	Liquid Phaseâ€Induced Solid Solution Phase Mechanisms for Highly Stable and Ultrafast Energy Storage. Advanced Energy Materials, 2021, 11, 2102342.	19.5	6
580	Voltage plateau variation in a bismuth-potassium battery. Journal of Materials Chemistry A, 2022, 10, 2917-2923.	10.3	6
581	K ⁺ Induced Phase Transformation of Layered Titanium Disulfide Boosts Ultrafast Potassiumâ€ion Storage. Advanced Functional Materials, 2022, 32, .	14.9	6
582	Energy Selects. ACS Energy Letters, 2019, 4, 1455-1457.	17.4	5
583	<scp>Singleâ€Atom</scp> Lithiophilic Sites Confined within Ordered Porous Carbon for <scp>Ultrastable</scp> Lithium Metal Anodes. Energy and Environmental Materials, 2023, 6, .	12.8	5
584	Synthesis, structure and electrochemical performance of nano-sized LiNi0.5Co0.5VO4. Journal of Materials Science Letters, 2003, 22, 1035-1037.	0.5	4
585	Self-Assembling Synthesis of Vanadium Oxide Nanotube Incorporating Organic Molecules. Key Engineering Materials, 2003, 249, 145-150.	0.4	4
586	Electrodes: Hierarchical Carbon Decorated Li ₃ V ₂ (PO ₄) ₃ as a Bicontinuous Cathode with Highâ€Rate Capability and Broad Temperature Adaptability (Adv. Energy Mater. 16/2014). Advanced Energy Materials, 2014, 4, .	19.5	4
587	P-doped germanium nanowires with Fano-broadening in Raman spectrum. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 52-57.	1.0	4
588	3D Nitrogenâ€Doped Graphene Encapsulated Metallic Nickel–Iron Alloy Nanoparticles for Efficient Bifunctional Oxygen Electrocatalysis. Chemistry - A European Journal, 2020, 26, 3896.	3.3	4
589	Sulfide synergistic electrochemical activity for high-performance alkaline rechargeable microbatteries. Journal of Materials Science, 2021, 56, 629-639.	3.7	4
590	Quadrupling the stored charge by extending the accessible density of states. CheM, 2022, 8, 2410-2418.	11.7	4
591	Synthesis and Characterization of Novel Vanadium Dioxide Nanorods. Materials Research Society Symposia Proceedings, 2003, 788, 1271.	0.1	3
592	Hybrid Nanostructures: Nanoscroll Buffered Hybrid Nanostructural VO2(B) Cathodes for High-Rate and Long-Life Lithium Storage (Adv. Mater. 21/2013). Advanced Materials, 2013, 25, 2968-2968.	21.0	3
593	Introduce Tortuosity to Retain Polysulfides and Suppress Li Dendrites. Matter, 2020, 2, 1363-1365.	10.0	3
594	Operando Observation of Structural Evolution and Kinetics of Li[Ni0.6Co0.2Mn0.2]O2 at Elevated Temperature. Chemical Research in Chinese Universities, 2020, 36, 690-693.	2.6	3

#	ARTICLE	IF	CITATIONS
595	Submerged-Plant-Inspired Five-Level-Synergetic hierarchical Single-Fe-Atom-Doped Micro-Electrodes for High-Performance multifunctional electrocatalysis. Chemical Engineering Journal, 2022, 446, 136804.	12.7	3
596	Thermoelectric Properties of an Individual Suspended Single-Crystalline Sb2Se3 Nanowire. Journal of Thermal Science, 0, , .	1.9	3
597	Materials Research at Wuhan University of Technology. Advanced Materials, 2017, 29, 1701082.	21.0	2
598	Microdevices: Carbonâ€MEMSâ€Based Alternating Stacked MoS ₂ @rGO NT Microâ€Supercapacitor with High Capacitance and Energy Density (Small 26/2017). Small, 2017, 13, .	10.0	2
599	Polyol Solvation Effect on Tuning the Universal Growth of Binary Metal Oxide Nanodots@Graphene Oxide Heterostructures for Electrochemical Applications. Chemistry - A European Journal, 2019, 25, 14604-14612.	3.3	2
600	Nonlinear dynamic characteristics of combustion wave in SHS process. Journal Wuhan University of Technology, Materials Science Edition, 2002, 17, 23-26.	1.0	1
601	Surface Modification of LiNi _{0.5} Co _{0.5} VO ₄ by Overcoating with SiO ₂ . Key Engineering Materials, 2003, 249, 151-154.	0.4	1
602	Electrochemical conversion and storage systems: general discussion. Faraday Discussions, 2014, 176, 153-184.	3.2	1
603	CNTs/LiV3O8/Y2O3 Composites with Enhanced Electrochemical Performances as Cathode Materials for Rechargeable Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 8219-8228.	8.0	1
604	In SituObservation and Mechanism Investigation of Lattice Breathing in Vanadium Oxide Cathode. Acta Chimica Sinica, 2016, 74, 582.	1.4	1
605	Femtosecond laser induced in-situ crystallization of Tb-based luminescent metal organic framework. Optics Express, 2021, 29, 39304.	3.4	1
606	Subâ€Nanometer Confined Ions and Solvent Molecules Intercalation Capacitance in Microslits of 2D Materials (Small 49/2021). Small, 2021, 17, .	10.0	1
607	Effect of Mo Doping and Heat Treatment on Microstructure and Electrochemical Performance of Vanadium Oxide Nanotubes. Materials Research Society Symposia Proceedings, 2003, 788, 11361.	0.1	0
608	Design and Synthesis of Kinked Nanowire Structures for Nanoelectronic Bioprobes. , 2013, , .		0
609	Electrochemical Nanowire Devices for Energy Storage. , 2015, , .		0
610	One Dimensional Nanomaterials for Emerging Energy Storage. , 2018, , .		0