Anne O Summers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9220516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hg(II) Binding to Thymine Bases in DNA. Inorganic Chemistry, 2021, 60, 7442-7452.	4.0	7
2	Children with Amalgam Dental Restorations Have Significantly Elevated Blood and Urine Mercury Levels. Toxicological Sciences, 2021, 184, 104-126.	3.1	5
3	Thinking outside the (pill) box: Does toxic metal exposure thwart antibiotic stewardship best practices?. Plasmid, 2018, 99, 68-71.	1.4	3
4	Transcriptional responses of Escherichia coli during recovery from inorganic or organic mercury exposure. BMC Genomics, 2018, 19, 52.	2.8	22
5	Organic and inorganic mercurials have distinct effects on cellular thiols, metal homeostasis, and Fe-binding proteins in Escherichia coli. Journal of Biological Inorganic Chemistry, 2015, 20, 1239-1251.	2.6	20
6	Metal Resistance Loci of Bacterial Plasmids. , 2014, , 165-173.		2
7	Novel Oral Detoxification of Mercury, Cadmium, And Lead with Thiol-Modified Nanoporous Silica. ACS Applied Materials & Interfaces, 2014, 6, 5483-5493.	8.0	48
8	Why Mercury Prefers Soft Ligands. Journal of Physical Chemistry Letters, 2013, 4, 2317-2322.	4.6	54
9	Large plasmids of Escherichia coli and Salmonella encode highly diverse arrays of accessory genes on common replicon families. Plasmid, 2013, 69, 36-48.	1.4	31
10	Supramolecular dendrimer capsules by cooperative binding. Chemical Communications, 2011, 47, 268-270.	4.1	8
11	Regulation of the integrase and cassette promoters of the class 1 integron by nucleoid-associated proteins. Microbiology (United Kingdom), 2011, 157, 2841-2853.	1.8	17
12	Major Families of Multiresistant Plasmids from Geographically and Epidemiologically Diverse Staphylococci. G3: Genes, Genomes, Genetics, 2011, 1, 581-591.	1.8	92
13	Discovering Mercury Protein Modifications in Whole Proteomes Using Natural Isotope Distributions Observed in Liquid Chromatography-Tandem Mass Spectrometry. Molecular and Cellular Proteomics, 2011, 10, M110.004853.	3.8	15
14	Emergence of Resistance among USA300 Methicillin-Resistant <i>Staphylococcus aureus</i> Isolates Causing Invasive Disease in the United States. Antimicrobial Agents and Chemotherapy, 2010, 54, 3804-3811.	3.2	137
15	Structure and Conformational Dynamics of the Metalloregulator MerR upon Binding of Hg(II). Journal of Molecular Biology, 2010, 398, 555-568.	4.2	32
16	Intracellular Steady-State Concentration of Integron Recombination Products Varies with Integrase Level and Growth Phase. Journal of Molecular Biology, 2009, 386, 316-331.	4.2	8
17	Damage control: regulating defenses against toxic metals and metalloids. Current Opinion in Microbiology, 2009, 12, 138-144.	5.1	58
18	Mechanism of Hgâ^'C Protonolysis in the Organomercurial Lyase MerB. Journal of the American Chemical Society, 2009, 131, 13278-13285.	13.7	70

#	Article	IF	CITATIONS
19	Revised nomenclature for transposable genetic elements. Plasmid, 2008, 60, 167-173.	1.4	222
20	GENERAL CHARACTERISTICS OF PROKARYOTIC GENOMES. Series on Advances in Bioinformatics and Computational Biology, 2008, , 1-37.	0.2	0
21	19F-NMR Reveals Metal and Operator-induced Allostery in MerR. Journal of Molecular Biology, 2007, 371, 79-92.	4.2	26
22	Genetic Linkage and Horizontal Gene Transfer, the Roots of the AntibioticMulti-Resistance Problem. Animal Biotechnology, 2006, 17, 125-135.	1.5	92
23	Quantitative, longitudinal profiling of the primate fecal microbiota reveals idiosyncratic, dynamic communities. Environmental Microbiology, 2006, 8, 490-503.	3.8	8
24	Facile Recovery of Individual High-Molecular-Weight, Low-Copy-Number Natural Plasmids for Genomic Sequencing. Applied and Environmental Microbiology, 2006, 72, 4899-4906.	3.1	44
25	Hg(II) sequestration and protection by the MerR metal-binding domain (MBD). Microbiology (United) Tj ETQq1	1 0.784314 1.8	rggT /Overlo
26	Mobile genetic elements: the agents of open source evolution. Nature Reviews Microbiology, 2005, 3, 722-732.	28.6	1,428
27	NmerA, the Metal Binding Domain of Mercuric Ion Reductase, Removes Hg2+ from Proteins, Delivers It to the Catalytic Core, and Protects Cells under Glutathione-Depleted Conditions,. Biochemistry, 2005, 44, 11402-11416.	2.5	66
28	Engineered Single-Chain, Antiparallel, Coiled CoilMimics the MerR Metal BindingSite. Journal of Bacteriology, 2004, 186, 1861-1868.	2.2	20
29	Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7118-7122.	7.1	262
30	NMR Structural Studies Reveal a Novel Protein Fold for MerB, the Organomercurial Lyase Involved in the Bacterial Mercury Resistance System,. Biochemistry, 2004, 43, 8322-8332.	2.5	37
31	Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews, 2003, 27, 355-384.	8.6	852
32	Generally Overlooked Fundamentals of Bacterial Genetics and Ecology. Clinical Infectious Diseases, 2002, 34, S85-S92.	5.8	171
33	The Roles of Thiols in the Bacterial Organomercurial Lyase (MerB)â€. Biochemistry, 2002, 41, 10287-10296.	2.5	70
34	Incidence of Class 1 and 2 Integrases in Clinical and Commensal Bacteria from Livestock, Companion Animals, and Exotics. Antimicrobial Agents and Chemotherapy, 2001, 45, 723-726.	3.2	324
35	Rubrerythrin and Rubredoxin Oxidoreductase in Desulfovibrio vulgaris : a Novel Oxidative Stress Protection System. Journal of Bacteriology, 2001, 183, 101-108.	2.2	213
36	Rubrerythrin and Rubredoxin Oxidoreductase in <i>Desulfovibrio vulgaris</i> : a Novel Oxidative Stress Protection System. Journal of Bacteriology, 2001, 183, 2970-2970.	2.2	11

#	Article	IF	CITATIONS
37	The Quality of merC, a Module of the mer Mosaic. Journal of Molecular Evolution, 2000, 51, 607-622.	1.8	39
38	Incidence and Characterization of Integrons, Genetic Elements Mediating Multiple-Drug Resistance, in Avian <i>Escherichia coli</i> . Antimicrobial Agents and Chemotherapy, 1999, 43, 2925-2929.	3.2	254
39	Transposon Tn <i>21</i> , Flagship of the Floating Genome. Microbiology and Molecular Biology Reviews, 1999, 63, 507-522.	6.6	551
40	Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6808-6813.	7.1	246
41	MerR Cross-Links to the α, β, and σ70Subunits of RNA Polymerase in the Preinitiation Complex at themerTPCADPromoterâ€. Biochemistry, 1999, 38, 3362-3368.	2.5	28
42	Cd(II)-Responsive and Constitutive Mutants Implicate a Novel Domain in MerR. Journal of Bacteriology, 1999, 181, 3462-3471.	2.2	37
43	The Core Metal-Recognition Domain of MerRâ€. Biochemistry, 1998, 37, 15885-15895.	2.5	46
44	Bacterial Oxidation of Mercury Metal Vapor, Hg(0). Applied and Environmental Microbiology, 1998, 64, 1328-1332.	3.1	74
45	Mutations in the alpha and sigma-70 subunits of RNA polymerase affect expression of the mer operon. Journal of Bacteriology, 1997, 179, 1787-1795.	2.2	32
46	Near-Zero Background Cloning of PCR Products. BioTechniques, 1997, 23, 412-418.	1.8	10
47	A rubrerythrin operon and nigerythrin gene in Desulfovibrio vulgaris (Hildenborough). Journal of Bacteriology, 1997, 179, 4607-4615.	2.2	51
48	Association of mercury resistance with antibiotic resistance in the gram-negative fecal bacteria of primates. Applied and Environmental Microbiology, 1997, 63, 4494-4503.	3.1	115
49	Phylogeny of mercury resistance (mer) operons of gram-negative bacteria isolated from the fecal flora of primates. Applied and Environmental Microbiology, 1997, 63, 1066-1076.	3.1	127
50	Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3182-3187.	7.1	396
51	The dental amalgam mercury controversy — inorganic mercury and the CNS; genetic linkage of mercury and antibiotic resistances in intestinal bacteria. Toxicology, 1995, 97, 19-22.	4.2	30
52	Mercury exposure from "silver―tooth fillings: emerging evidence questions a traditional dental paradigm. FASEB Journal, 1995, 9, 504-508.	0.5	174
53	New Policy for Titles of Letters to the Editor. Antimicrobial Agents and Chemotherapy, 1994, 38, 160-161.	3.2	0
54	Roles of the Tn21 merT, merP, and merC gene products in mercury resistance and mercury binding. Journal of Bacteriology, 1992, 174, 6377-6385.	2.2	142

#	Article	IF	CITATIONS
55	Untwist and shout: a heavy metal-responsive transcriptional regulator. Journal of Bacteriology, 1992, 174, 3097-3101.	2.2	232
56	Synthesis and degradation of the mRNA of the Tn21 mer operon. Journal of Molecular Biology, 1992, 225, 251-259.	4.2	18
57	Genetic analysis of the Tn21 mer operator-promoter. Journal of Bacteriology, 1992, 174, 2160-2171.	2.2	42
58	A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity. Journal of Bacteriology, 1992, 174, 8094-8101.	2.2	93
59	The hard stuff: Metals in bioremediation. Current Opinion in Biotechnology, 1992, 3, 271-276.	6.6	28
60	Activator-dependent preinduction binding of .sigma70 RNA polymerase at the metal-regulated mer promoter. Biochemistry, 1990, 29, 9572-9584.	2.5	92
61	Translation of merD in Tn21. Journal of Bacteriology, 1989, 171, 2222-2225.	2.2	23
62	Transcriptional switching by the MerR protein: activation and repression mutants implicate distinct DNA and mercury(II) binding domains. Biochemistry, 1989, 28, 2340-2344.	2.5	63
63	Genetic analysis of transcriptional activation and repression in the Tn21 mer operon. Journal of Bacteriology, 1989, 171, 4009-4018.	2.2	85
64	The distribution and divergence of DNA sequences related to the Tn21 and Tn501 mer operons. Plasmid, 1988, 20, 127-136.	1.4	40
65	Biotransformations of Mercury Compounds. , 1988, 45, 105-109.		2
66	Overexpression and DNA-binding properties of the mer-encoded regulatory protein from plasmid NR1 (Tn21). Journal of Bacteriology, 1987, 169, 3379-3384.	2.2	42
67	Plasmid-Encoded Ion Transport Systems. , 1987, , 305-326.		6
68	Organization, Expression, and Evolution of Genes for Mercury Resistance. Annual Review of Microbiology, 1986, 40, 607-634.	7.3	328
69	Bacterial resistance to toxic elements. Trends in Biotechnology, 1985, 3, 122-125.	9.3	23
70	Versatile mercury-resistant cloning and expression vectors. Gene, 1985, 39, 293-297.	2.2	23
71	The Structure of the mer Operon. , 1985, 30, 707-718.		8
72	Transpositional Mutagenesis of <i>Thiobacillus novellus</i> and <i>Thiobacillus versutus</i> . Applied and Environmental Microbiology, 1985, 49, 1436-1441.	3.1	16

#	Article	IF	CITATIONS
73	Physical and genetic map of the organomercury resistance (Omr) and inorganic mercury resistance (Hgr) loci of the IncM plasmid R831b. Gene, 1984, 32, 311-320.	2.2	38
74	Bacterial Metal Ion Resistances. , 1984, , 345-367.		2
75	A second positive regulatory function in the mer (mercury resistance) operon. Gene, 1983, 25, 209-221.	2.2	25
76	Wide-Host-Range Plasmids Function in the Genus <i>Thiobacillus</i> . Applied and Environmental Microbiology, 1983, 46, 565-572.	3.1	44
77	Effect of catabolite repression on the mer operon Journal of Bacteriology, 1982, 149, 191-197.	2.2	19
78	Polypeptides encoded by the mer operon. Journal of Bacteriology, 1982, 149, 479-487.	2.2	52
79	Biochemical characterization of HgCl2-inducible polypeptides encoded by the mer operon of plasmid R100. Journal of Bacteriology, 1982, 151, 962-970.	2.2	57
80	Tn1 generated mutants in the mercuric ion reductase of the Inc P plasmid, R702. Molecular Genetics and Genomics, 1980, 180, 91-97.	2.4	24
81	Transposition of mercury resistance from a transferable R plasmid of Escherichia coli. Plasmid, 1980, 3, 35-47.	1.4	15
82	Association of tellurium resistance and bacteriophage inhibition conferred by R plasmids. Journal of Bacteriology, 1979, 137, 1430-1433.	2.2	63
83	Plasmid-Determined Resistance to Boron and Chromium Compounds in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 1978, 13, 637-640.	3.2	87
84	Plasmid-determined resistance to tellurium compounds. Journal of Bacteriology, 1977, 129, 276-281.	2.2	187
85	Outer membrane proteins of Escherichia coli. V. Evidence that protein 1 and bacteriophage-directed protein 2 are different polypeptides. Journal of Bacteriology, 1977, 131, 598-607.	2.2	84
86	Cell-Free Mercury(II)-Reducing Activity in a Plasmid-Bearing Strain of <i>Escherichia coli</i> . Journal of Bacteriology, 1974, 119, 242-249.	2.2	98
87	Volatilization of Mercuric Chloride by Mercury-Resistant Plasmid-Bearing Strains of <i>Escherichia coli, Staphylococcus aureus</i> , and <i>Pseudomonas aeruginosa</i> . Journal of Bacteriology, 1973, 113, 1070-1072.	2.2	87
88	Mercury Resistance in a Plasmid-Bearing Strain of <i>Escherichia coli</i> . Journal of Bacteriology, 1972, 112, 1228-1236.	2.2	216