Giacomo Ciani

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9220501/giacomo-ciani-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

189	41,554	71	197
papers	citations	h-index	g-index
197 ext. papers	52,288 ext. citations	6.1 avg, IF	5.59 L-index

#	Paper	IF	Citations
189	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. <i>Classical and Quantum Gravity</i> , 2022 , 39, 045006	3.3	2
188	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. <i>Physical Review D</i> , 2022 , 105,	4.9	4
187	Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 921, 80	4.7	10
186	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 909, 218	4.7	46
185	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. <i>Physical Review D</i> , 2021 , 103,	4.9	15
184	Automated source of squeezed vacuum states driven by finite state machine based software. <i>Review of Scientific Instruments</i> , 2021 , 92, 054504	1.7	1
183	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. <i>Astrophysical Journal Letters</i> , 2021 , 913, L27	7.9	13
182	Population Properties of Compact Objects from the Second LIGOVirgo Gravitational-Wave Transient Catalog. <i>Astrophysical Journal Letters</i> , 2021 , 913, L7	7.9	194
181	Observation of Gravitational Waves from Two Neutron Star B lack Hole Coalescences. <i>Astrophysical Journal Letters</i> , 2021 , 915, L5	7.9	142
180	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. <i>Physical Review D</i> , 2021 , 103,	4.9	81
179	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO-Virgo Observing Run. <i>Physical Review Letters</i> , 2021 , 126, 241102	7.4	21
178	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. <i>Physical Review X</i> , 2021 , 11,	9.1	311
177	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGOVirgo Run O3a. <i>Astrophysical Journal</i> , 2021 , 915, 86	4.7	6
176	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGON Third Observing Run. <i>Astrophysical Journal</i> , 2021 , 923, 14	4.7	4
175	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. <i>Astrophysical Journal Letters</i> , 2020 , 896, L44	7.9	571
174	GW190425: Observation of a Compact Binary Coalescence with Total Mass ~ 3.4 M?. <i>Astrophysical Journal Letters</i> , 2020 , 892, L3	7.9	591
173	Model comparison from LIGON irgo data on GW170817 binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006	3.3	69

(2019-2020)

172	A guide to LIGO Virgo detector noise and extraction of transient gravitational-wave signals. <i>Classical and Quantum Gravity</i> , 2020 , 37, 055002	3.3	78
171	Advanced Virgo Status. <i>Journal of Physics: Conference Series</i> , 2020 , 1342, 012010	0.3	8
170	Properties and Astrophysical Implications of the 150 M? Binary Black Hole Merger GW190521. <i>Astrophysical Journal Letters</i> , 2020 , 900, L13	7.9	207
169	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. <i>Astrophysical Journal Letters</i> , 2020 , 902, L21	7.9	32
168	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2020 , 23, 3	32.5	144
167	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. <i>Astrophysical Journal</i> , 2020 , 893, 100	4.7	9
166	Study and experiment on the alternative technique of frequency dependent squeezing generation with EPR entanglement for Virgo. <i>Journal of Physics: Conference Series</i> , 2020 , 1468, 012215	0.3	
165	GW190521: A Binary Black Hole Merger with a Total Mass of 150 M_{?}. <i>Physical Review Letters</i> , 2020 , 125, 101102	7.4	420
164	Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. <i>Physical Review Letters</i> , 2020 , 125, 131101	7.4	17
163	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. <i>Physical Review D</i> , 2020 , 102,	4.9	212
162	The advanced Virgo longitudinal control system for the O2 observing run. <i>Astroparticle Physics</i> , 2020 , 116, 102386	2.4	7
161	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. <i>Physical Review D</i> , 2020 , 101,	4.9	36
160	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal Letters</i> , 2019 , 882, L24	7.9	381
159	Directional limits on persistent gravitational waves using data from Advanced LIGOE first two observing runs. <i>Physical Review D</i> , 2019 , 100,	4.9	31
158	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. <i>Physical Review X</i> , 2019 , 9,	9.1	1169
157	Search for the isotropic stochastic background using data from Advanced LIGOE second observing run. <i>Physical Review D</i> , 2019 , 100,	4.9	117
156	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. <i>Astrophysical Journal Letters</i> , 2019 , 871, L13	7.9	77
155	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. <i>Physical Review D</i> , 2019 , 99,	4.9	17

154	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. <i>Astrophysical Journal</i> , 2019 , 870, 134	4.7	23
153	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. <i>Astrophysical Journal</i> , 2019 , 871, 90	4.7	22
152	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO. <i>Astrophysical Journal</i> , 2019 , 875, 122	4.7	45
151	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal</i> , 2019 , 875, 160	4.7	60
150	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary B lack-hole Merger GW170814. <i>Astrophysical Journal Letters</i> , 2019 , 876, L7	7.9	91
149	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. <i>Astrophysical Journal</i> , 2019 , 875, 161	4.7	49
148	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGOE Second Observing Run. <i>Astrophysical Journal</i> , 2019 , 874, 163	4.7	17
147	Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO. <i>Physical Review D</i> , 2019 , 99,	4.9	58
146	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. <i>Physical Review D</i> , 2019 , 99,	4.9	43
145	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015\(\textit{0017 LIGO Data}\). Astrophysical Journal, 2019 , 879, 10	4.7	63
144	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. <i>Physical Review D</i> , 2019 , 100,	4.9	81
143	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2019 , 100,	4.9	39
142	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102	7.4	204
141	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. <i>Astrophysical Journal</i> , 2019 , 883, 149	4.7	36
140	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. <i>Physical Review D</i> , 2019 , 100,	4.9	39
139	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. <i>Physical Review Letters</i> , 2019 , 123, 161102	7.4	68
138	Constraining the p-Mode-g-Mode Tidal Instability with GW170817. <i>Physical Review Letters</i> , 2019 , 122, 061104	7∙4	22
137	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. <i>Physical Review D</i> , 2019 , 100,	4.9	258

(2018-2019)

136	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. <i>Physical Review Letters</i> , 2019 , 123, 231108	7.4	134
135	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal</i> , 2019 , 886, 75	4.7	21
134	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. <i>Physical Review D</i> , 2019 , 100,	4.9	31
133	Properties of the Binary Neutron Star Merger GW170817. <i>Physical Review X</i> , 2019 , 9,	9.1	423
132	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGOE first observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065010	3.3	62
131	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. <i>Physical Review Letters</i> , 2018 , 120, 091101	7.4	120
130	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065009	3.3	12
129	First Search for Nontensorial Gravitational Waves from Known Pulsars. <i>Physical Review Letters</i> , 2018 , 120, 031104	7.4	50
128	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2018 , 21, 3	32.5	543
127	Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. <i>Physical Review D</i> , 2018 , 97,	4.9	77
126	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2018 , 97,	4.9	37
125	Constraints on cosmic strings using data from the first Advanced LIGO observing run. <i>Physical Review D</i> , 2018 , 97,	4.9	60
124	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA 2018 , 21, 1		2
123	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2018 , 121, 231103	7.4	49
122	GW170817: Measurements of Neutron Star Radii and Equation of State. <i>Physical Review Letters</i> , 2018 , 121, 161101	7.4	867
121	Calibration of advanced Virgo and reconstruction of the gravitational wave signal h (t) during the observing run O2. <i>Classical and Quantum Gravity</i> , 2018 , 35, 205004	3.3	35
120	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003	0.3	4
119	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. <i>Physical Review Letters</i> , 2018 , 120, 201102	7.4	60

118	Exploring the sensitivity of next generation gravitational wave detectors. <i>Classical and Quantum Gravity</i> , 2017 , 34, 044001	3.3	454
117	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. <i>Physical Review D</i> , 2017 , 95,	4.9	54
116	Effects of waveform model systematics on the interpretation of GW150914. <i>Classical and Quantum Gravity</i> , 2017 , 34, 104002	3.3	74
115	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. <i>Physical Review D</i> , 2017 , 95,	4.9	60
114	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121101	7.4	137
113	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121102	7.4	65
112	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. <i>Astrophysical Journal</i> , 2017 , 839, 12	4.7	107
111	The basic physics of the binary black hole merger GW150914. <i>Annalen Der Physik</i> , 2017 , 529, 1600209	2.6	45
110	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2017 , 119, 141101	7.4	1270
109	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. <i>Astrophysical Journal</i> , 2017 , 847, 47	4.7	35
108	A gravitational-wave standard siren measurement of the Hubble constant. <i>Nature</i> , 2017 , 551, 85-88	50.4	413
107	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. <i>Physical Review Letters</i> , 2017 , 119, 161101	7.4	4272
106	Multi-messenger Observations of a Binary Neutron Star Merger. <i>Astrophysical Journal Letters</i> , 2017 , 848, L12	7.9	1935
105	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. <i>Astrophysical Journal Letters</i> , 2017 , 848, L13	7.9	1614
104	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. <i>Physical Review D</i> , 2017 , 96,	4.9	64
103	Quantum correlation measurements in interferometric gravitational-wave detectors. <i>Physical Review A</i> , 2017 , 95,	2.6	9
102	All-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54

(2016-2017)

100	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. <i>Astrophysical Journal</i> , 2017 , 841, 89	4.7	42
99	First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO. <i>Physical Review Letters</i> , 2017 , 118, 151102	7.4	18
98	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 851, L16	7.9	133
97	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L39	7.9	127
96	Effects of transients in LIGO suspensions on searches for gravitational waves. <i>Review of Scientific Instruments</i> , 2017 , 88, 124501	1.7	4
95	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. <i>Physical Review Letters</i> , 2017 , 118, 221101	7.4	1609
94	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. <i>Physical Review D</i> , 2017 , 95,	4.9	14
93	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. <i>Physical Review D</i> , 2017 , 95,	4.9	47
92	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. <i>Physical Review D</i> , 2017 , 96,	4.9	39
91	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54
90	On the Progenitor of Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L40	7.9	50
89	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. <i>Astrophysical Journal Letters</i> , 2017 , 851, L35	7.9	809
88	Alignment sensing for optical cavities using radio-frequency jitter modulation. <i>Applied Optics</i> , 2017 , 56, 3879-3888	0.2	5
87	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 826, L13	7.9	183
86	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. <i>Physical Review D</i> , 2016 , 94,	4.9	28
85	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. <i>Physical Review D</i> , 2016 , 94,	4.9	43
84	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR B LACK HOLE MERGERS FROM ADVANCED LIGOS FIRST OBSERVING RUN. <i>Astrophysical Journal Letters</i> , 2016 , 832, L21	7.9	130
83	Directly comparing GW150914 with numerical solutions of Einstein equations for binary black hole coalescence. <i>Physical Review D</i> , 2016 , 94,	4.9	76

82	All-sky search for long-duration gravitational wave transients with initial LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	27
81	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. <i>Physical Review D</i> , 2016 , 93,	4.9	14
80	First low frequency all-sky search for continuous gravitational wave signals. <i>Physical Review D</i> , 2016 , 93,	4.9	29
79	Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. <i>Physical Review D</i> , 2016 , 93,	4.9	208
78	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	253
77	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007 2 013. <i>Physical Review D</i> , 2016 , 93,	4.9	10
76	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. <i>Physical Review Letters</i> , 2016 , 116, 131102	7.4	188
75	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. <i>Physical Review Letters</i> , 2016 , 116, 131103	7.4	328
74	SUPPLEMENT: IOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914[[2016, ApJL, 826, L13). <i>Astrophysical Journal, Supplement Series</i> , 2016 , 225, 8	8	38
73	Observing gravitational-wave transient GW150914 with minimal assumptions. <i>Physical Review D</i> , 2016 , 93,	4.9	94
72	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101	7.4	837
71	Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. <i>Physical Review Letters</i> , 2016 , 116, 231101	7.4	319
70	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102	7.4	515
69	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2016 , 116, 241103	7.4	2136
68	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. <i>Physical Review X</i> , 2016 , 6,	9.1	723
67	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 818, L22	7.9	512
66	Observation of Gravitational Waves from a Binary Black Hole Merger. <i>Physical Review Letters</i> , 2016 , 116, 061102	7.4	6108
65	Overview of Advanced LIGO adaptive optics. <i>Applied Optics</i> , 2016 , 55, 8256-8265	0.2	35

(2014-2016)

Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016 , 33,	3.3	155
SUPPLEMENT: THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914[[2016, ApJL, 833, L1). <i>Astrophysical Journal, Supplement Series</i> , 2016 , 227, 14	8	52
Small optic suspensions for Advanced LIGO input optics and other precision optical experiments. <i>Review of Scientific Instruments</i> , 2016 , 87, 114504	1.7	2
Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. <i>Living Reviews in Relativity</i> , 2016 , 19, 1	32.5	393
Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. <i>Physical Review X</i> , 2016 , 6,	9.1	89
Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. <i>Physical Review D</i> , 2016 , 94,	4.9	29
THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 833, L1	7.9	209
The advanced LIGO input optics. <i>Review of Scientific Instruments</i> , 2016 , 87, 014502	1.7	25
Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. <i>Physical Review D</i> , 2015 , 91,	4.9	26
Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. <i>Physical Review D</i> , 2015 , 91,	4.9	38
Characterization of the LIGO detectors during their sixth science run. <i>Classical and Quantum Gravity</i> , 2015 , 32, 115012	3.3	790
Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001	3.3	1098
SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. <i>Astrophysical Journal</i> , 2015 , 813, 39	4.7	58
The UF Torsion Pendulum, a LISA Technology Testbed: Sensing System and Initial Results. <i>Journal of Physics: Conference Series</i> , 2015 , 610, 012038	0.3	
240 nm UV LEDs for LISA test mass charge control. <i>Journal of Physics: Conference Series</i> , 2015 , 610, 012	20343	7
Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. <i>Physical Review D</i> , 2015 , 91,	4.9	32
Progress and challenges in advanced ground-based gravitational-wave detectors. <i>General Relativity and Gravitation</i> , 2014 , 46, 1	2.3	2
	GW150914. Classical and Quantum Gravity, 2016, 33, SUPPLEMENT: THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914[[2016, Ap.JL., 833, L.1). Astrophysical Journal, Supplement Series, 2016, 227, 14 Small optic suspensions for Advanced LIGO input optics and other precision optical experiments. Review of Scientific Instruments, 2016, 87, 114504 Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1 Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, Results of the deepest all-sky survey for continuous gravitational waves on LIGO Sc data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1 The advanced LIGO input optics. Review of Scientific Instruments, 2016, 87, 014502 Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012 Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001 SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39 The UF Torsion Pendulum, a LISA Technology Testbed: Sensing System and Initial Results. Journal of Physics: Conference Series, 2015, 610, 012038 240 nm UV LEDs for LISA test mass charge control. Journal of Physics: Conference Series, 2015, 610, 012038 Progress and challenges in advanced ground-based gravitational-wave detectors. General Relativity	GW150914. Classical and Quantum Gravity, 2016, 33, SUPPLEMENT: BHE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914[[2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14 Small optic suspensions for Advanced LIGO input optics and other precision optical experiments. Review of Scientific Instruments, 2016, 87, 114504 Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1 Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1 The advanced LIGO input optics. Review of Scientific Instruments, 2016, 87, 014502 1:7 Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity 2015, 32, 115012 Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001 33 SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39 The UF Torsion Pendulum, a LISA Technology Testbed: Sensing System and Initial Results. Journal of Physics: Conference Series, 2015, 610, 012038 Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, Progress and challenges in advanced ground-based gravitational-wave detectors. General Relativity

46	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. <i>Classical and Quantum Gravity</i> , 2014 , 31, 165014	3.3	27
45	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014 , 785, 119	4.7	109
44	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. <i>Classical and Quantum Gravity</i> , 2014 , 31, 085014	3.3	18
43	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. <i>Classical and Quantum Gravity</i> , 2014 , 31, 115004	3.3	34
42	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005 2 010. <i>Physical Review D</i> , 2014 , 89,	4.9	26
41	Search for gravitational waves associated with Fray bursts detected by the interplanetary network. <i>Physical Review Letters</i> , 2014 , 113, 011102	7.4	30
40	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. <i>Physical Review D</i> , 2014 , 89,	4.9	32
39	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. <i>Physical Review D</i> , 2014 , 89,	4.9	25
38	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014 , 211, 7	8	51
37	First all-sky search for continuous gravitational waves from unknown sources in binary systems. <i>Physical Review D</i> , 2014 , 90,	4.9	54
36	Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. <i>Physical Review Letters</i> , 2014 , 112, 131101	7.4	59
35	Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data. <i>Physical Review Letters</i> , 2014 , 113, 231101	7.4	74
34	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009\(\textbf{Q} 010. \) Physical Review D, 2013 , 87,	4.9	91
33	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. <i>Physical Review D</i> , 2013 , 88,	4.9	30
32	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. <i>Nature Photonics</i> , 2013 , 7, 613-619	33.9	572
31	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. <i>Physical Review D</i> , 2013 , 87,	4.9	84
30	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. <i>Physical Review D</i> , 2013 , 88,	4.9	122
29	Directed search for continuous gravitational waves from the Galactic center. <i>Physical Review D</i> , 2013 , 88,	4.9	57

(2009-2012)

28	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. <i>Physical Review D</i> , 2012 , 85,	4.9	96
27	Search for gravitational waves from intermediate mass binary black holes. <i>Physical Review D</i> , 2012 , 85,	4.9	46
26	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600f1000 Hz. <i>Physical Review D</i> , 2012 , 85,	4.9	40
25	Search for gravitational waves from low mass compact binary coalescence in LIGOE sixth science run and VirgoE science runs 2 and 3. <i>Physical Review D</i> , 2012 , 85,	4.9	172
24	All-sky search for periodic gravitational waves in the full S5 LIGO data. <i>Physical Review D</i> , 2012 , 85,	4.9	61
23	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. <i>Astrophysical Journal, Supplement Series</i> , 2012 , 203, 28	8	57
22	The characterization of Virgo data and its impact on gravitational-wave searches. <i>Classical and Quantum Gravity</i> , 2012 , 29, 155002	3.3	59
21	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. <i>Astronomy and Astrophysics</i> , 2012 , 541, A155	5.1	69
20	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. <i>Astrophysical Journal</i> , 2012 , 760, 12	4.7	94
19	Implementation and testing of the first prompt search for Gravitational wave transients with electromagnetic counterparts. <i>Astronomy and Astrophysics</i> , 2012 , 539, A124	5.1	71
18	LISA Pathfinder: mission and status. Classical and Quantum Gravity, 2011, 28, 094001	3.3	45
17	From laboratory experiments to LISA Pathfinder: achieving LISA geodesic motion. <i>Classical and Quantum Gravity</i> , 2011 , 28, 094002	3.3	35
16	LISA Pathfinder data analysis. Classical and Quantum Gravity, 2011, 28, 094006	3.3	13
15	Brownian force noise from molecular collisions and the sensitivity of advanced gravitational wave observatories. <i>Physical Review D</i> , 2011 , 84,	4.9	19
14	A gravitational wave observatory operating beyond the quantum shot-noise limit. <i>Nature Physics</i> , 2011 , 7, 962-965	16.2	554
13	The LISA Pathfinder interferometryflardware and system testing. <i>Classical and Quantum Gravity</i> , 2011 , 28, 094003	3.3	20
12	Gas damping force noise on a macroscopic test body in an infinite gas reservoir. <i>Physics Letters, Section A: General, Atomic and Solid State Physics,</i> 2010 , 374, 3365-3369	2.3	19
11	Increased Brownian force noise from molecular impacts in a constrained volume. <i>Physical Review Letters</i> , 2009 , 103, 140601	7.4	40

10	Data analysis for the LISA Technology Package. Classical and Quantum Gravity, 2009, 26, 094003	3.3	25
9	The first mock data challenge for LISA Pathfinder. Classical and Quantum Gravity, 2009, 26, 094004	3.3	9
8	A new torsion pendulum for testing the limits of free-fall for LISA test masses. <i>Classical and Quantum Gravity</i> , 2009 , 26, 094017	3.3	25
7	Direct force measurements for testing the LISA Pathfinder gravitational reference sensor. <i>Classical and Quantum Gravity</i> , 2009 , 26, 094012	3.3	16
6	LISA Pathfinder: the experiment and the route to LISA. Classical and Quantum Gravity, 2009, 26, 094001	3.3	74
5	Ground testing, with a four mass torsion pendulum facility, of an optical-read-out for the LISA gravitational reference sensor. <i>Journal of Physics: Conference Series</i> , 2009 , 154, 012012	0.3	4
4	Thermal gradient-induced forces on geodesic reference masses for LISA. <i>Physical Review D</i> , 2007 , 76,	4.9	28
3	Upper limits to surface-force disturbances on LISA proof masses and the possibility of observing galactic binaries. <i>Physical Review D</i> , 2007 , 75,	4.9	18
2	Testing of the UV discharge system for LISA Pathfinder. AIP Conference Proceedings, 2006,	О	7
1	Torsion pendulum facility for direct force measurements of LISA GRS related disturbances. <i>AIP</i> Conference Proceedings, 2006 ,	O	4