Óttar Rolfsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9220344/publications.pdf

Version: 2024-02-01

56 3,124 25 54 papers citations h-index g-index

62 62 4684
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Glutamine-Fructose-6-Phosphate Transaminase 2 (GFPT2) Is Upregulated in Breast Epithelial–Mesenchymal Transition and Responds to Oxidative Stress. Molecular and Cellular Proteomics, 2022, 21, 100185.	2.5	12
2	UDPâ€glucose dehydrogenase expression is upregulated following EMT and differentially affects intracellular glycerophosphocholine and acetylaspartate levels in breast mesenchymal cell lines. Molecular Oncology, 2022, 16, 1816-1840.	2.1	4
3	Protein Concentrations in Stored Pooled Platelet Concentrates Treated with Pathogen Inactivation by Amotosalen Plus Ultraviolet a Illumination. Pathogens, 2022, 11, 350.	1.2	O
4	Metabolic Response in Endothelial Cells to Catecholamine Stimulation Associated with Increased Vascular Permeability. International Journal of Molecular Sciences, 2022, 23, 3162.	1.8	5
5	Exploratory Investigation of the Plasma Proteome Associated with the Endotheliopathy of Trauma. International Journal of Molecular Sciences, 2022, 23, 6213.	1.8	5
6	Cerebrospinal Fluid C18 Ceramide Associates with Markers of Alzheimer's Disease and Inflammation at the Pre- and Early Stages of Dementia. Journal of Alzheimer's Disease, 2021, 81, 231-244.	1.2	19
7	Analyzing Metabolic States of Adipogenic and Osteogenic Differentiation in Human Mesenchymal Stem Cells via Genome Scale Metabolic Model Reconstruction. Frontiers in Cell and Developmental Biology, 2021, 9, 642681.	1.8	5
8	EMT-Derived Alterations in Glutamine Metabolism Sensitize Mesenchymal Breast Cells to mTOR Inhibition. Molecular Cancer Research, 2021, 19, 1546-1558.	1.5	6
9	Argininosuccinate lyase is a metabolic vulnerability in breast development and cancer. Npj Systems Biology and Applications, 2021, 7, 36.	1.4	3
10	The Anti-Proliferative Lichen-Compound Protolichesterinic Acid Inhibits Oxidative Phosphorylation and Is Processed via the Mercapturic Pathway in Cancer Cells. Planta Medica, 2021, , .	0.7	0
11	Lipid mediator profiles of burn wound healing: Acellular cod fish skin grafts promote the formation of EPA and DHA derived lipid mediators following seven days of treatment. Prostaglandins Leukotrienes and Essential Fatty Acids, 2021, 175, 102358.	1.0	3
12	Metabolic and Transcriptional Changes across Osteogenic Differentiation of Mesenchymal Stromal Cells. Bioengineering, 2021, 8, 208.	1.6	6
13	Wound healing grafts: Omegaâ€3 fatty acid lipid content differentiates the lipid profiles of acellular Atlantic cod skin from traditional dermal substitutes. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 441-451.	1.3	12
14	Metabolic Systems Analysis of Shock-Induced Endotheliopathy (SHINE) in Trauma. Annals of Surgery, 2020, 272, 1140-1148.	2.1	23
15	Metabolomics study of platelet concentrates photochemically treated with amotosalen and UVA light for pathogen inactivation. Transfusion, 2020, 60, 367-377.	0.8	5
16	ECM1 secreted by HER2-overexpressing breast cancer cells promotes formation of a vascular niche accelerating cancer cell migration and invasion. Laboratory Investigation, 2020, 100, 928-944.	1.7	26
17	Visualizing metabolic network dynamics through time-series metabolomic data. BMC Bioinformatics, 2020, 21, 130.	1.2	13
18	Current Status and Future Prospects of Genome-Scale Metabolic Modeling to Optimize the Use of Mesenchymal Stem Cells in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2020, 8, 239.	2.0	12

#	Article	IF	CITATIONS
19	Comparative Metabolic Network Flux Analysis to Identify Differences in Cellular Metabolism. Methods in Molecular Biology, 2020, 2088, 223-269.	0.4	4
20	Pathogen inactivation with amotosalen plus UVA illumination minimally impacts microRNA expression in platelets during storage under standard blood banking conditions. Transfusion, 2019, 59, 3727-3735.	0.8	3
21	Azithromycin induces epidermal differentiation and multivesicular bodies in airway epithelia. Respiratory Research, 2019, 20, 129.	1.4	17
22	Combined artificial high-silicate medium and LED illumination promote carotenoid accumulation in the marine diatom Phaeodactylum tricornutum. Microbial Cell Factories, 2019, 18, 209.	1.9	27
23	Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta, 2018, 1014, 50-57.	2.6	61
24	Metabolic systems analysis of LPS induced endothelial dysfunction applied to sepsis patient stratification. Scientific Reports, 2018, 8, 6811.	1.6	29
25	Chemical Mutagenesis and Fluorescence-Based High-Throughput Screening for Enhanced Accumulation of Carotenoids in a Model Marine Diatom Phaeodactylum tricornutum. Marine Drugs, 2018, 16, 272.	2.2	35
26	Altered plasmalogen content and fatty acid saturation following epithelial to mesenchymal transition in breast epithelial cell lines. International Journal of Biochemistry and Cell Biology, 2018, 103, 99-104.	1,2	17
27	Systems analysis of metabolism in platelet concentrates during storage in platelet additive solution. Biochemical Journal, 2018, 475, 2225-2240.	1.7	20
28	Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition. Cancer Letters, 2017, 396, 117-129.	3.2	45
29	Metabolomics comparison of red cells stored in four additive solutions reveals differences in citrate anticoagulant permeability and metabolism. Vox Sanguinis, 2017, 112, 326-335.	0.7	46
30	Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Scientific Reports, 2017, 7, 46249.	1.6	121
31	Quantitative time-course metabolomics in human red blood cells reveal the temperature dependence of human metabolic networks. Journal of Biological Chemistry, 2017, 292, 19556-19564.	1.6	45
32	Mannose and fructose metabolism in red blood cells during cold storage in SAGM. Transfusion, 2017, 57, 2665-2676.	0.8	14
33	Regenerative and Antibacterial Properties of Acellular Fish Skin Grafts and Human Amnion/Chorion Membrane: Implications for Tissue Preservation in Combat Casualty Care. Military Medicine, 2017, 182, 383-388.	0.4	51
34	Understanding the Causes and Implications of Endothelial Metabolic Variation in Cardiovascular Disease through Genome-Scale Metabolic Modeling. Frontiers in Cardiovascular Medicine, 2016, 3, 10.	1.1	15
35	Identified metabolic signature for assessing red blood cell unit quality is associated with endothelial damage markers and clinical outcomes. Transfusion, 2016, 56, 852-862.	0.8	105
36	Direct Evidence for Packaging Signal-Mediated Assembly of Bacteriophage MS2. Journal of Molecular Biology, 2016, 428, 431-448.	2.0	80

#	Article	IF	CITATIONS
37	Biomarkers defining the metabolic age of red blood cells during cold storage. Blood, 2016, 128, e43-e50.	0.6	115
38	Metabolic fate of adenine in red blood cells during storage in SAGM solution. Transfusion, 2016, 56, 2538-2547.	0.8	39
39	Bacteriophage MS2 genomic RNA encodes an assembly instruction manual for its capsid. Bacteriophage, 2016, 6, e1157666.	1.9	38
40	EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT. PLoS Computational Biology, 2016, 12, e1004924.	1.5	42
41	Metabolic Analysis of Red Blood Cells Stored at High Temperature. Blood, 2016, 128, 3848-3848.	0.6	0
42	Kinetic analysis of gluconate phosphorylation by human gluconokinase using isothermal titration calorimetry. FEBS Letters, 2015, 589, 3548-3555.	1.3	18
43	Metabolomic analysis of platelets during storage: a comparison between apheresis―and buffy coat–derived platelet concentrates. Transfusion, 2015, 55, 301-313.	0.8	54
44	Decoding the jargon of bottomâ€up metabolic systems biology. BioEssays, 2015, 37, 588-591.	1.2	12
45	Prediction of intracellular metabolic states from extracellular metabolomic data. Metabolomics, 2015, 11, 603-619.	1.4	66
46	Biochemical Characterization of Human Gluconokinase and the Proposed Metabolic Impact of Gluconic Acid as Determined by Constraint Based Metabolic Network Analysis. PLoS ONE, 2014, 9, e98760.	1.1	28
47	Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Analytical Chemistry, 2014, 86, 3985-3993.	3.2	279
48	Comprehensive metabolomic study of platelets reveals the expression of discrete metabolic phenotypes during storage. Transfusion, 2014, 54, 2911-2923.	0.8	61
49	A community-driven global reconstruction of human metabolism. Nature Biotechnology, 2013, 31, 419-425.	9.4	920
50	Inferring the metabolism of human orphan metabolites from their metabolic network context affirms human gluconokinase activity. Biochemical Journal, 2013, 449, 427-435.	1.7	21
51	The human metabolic reconstruction Recon 1 directs hypotheses of novel human metabolic functions. BMC Systems Biology, 2011, 5, 155.	3.0	60
52	Viral Genomic Single-Stranded RNA Directs the Pathway Toward a T=3 Capsid. Journal of Molecular Biology, 2010, 395, 924-936.	2.0	60
53	Mutually-induced Conformational Switching of RNA and Coat Protein Underpins Efficient Assembly of a Viral Capsid. Journal of Molecular Biology, 2010, 401, 309-322.	2.0	37
54	RNA Packing Specificity and Folding during Assembly of the Bacteriophage MS2. Computational and Mathematical Methods in Medicine, 2008, 9, 339-349.	0.7	12

$\tilde{\mathsf{A}}$ "ttar Rolfsson

#	Article	IF	CITATIONS
55	A Simple, RNA-Mediated Allosteric Switch Controls the Pathway to Formation of a T=3 Viral Capsid. Journal of Molecular Biology, 2007, 369, 541-552.	2.0	128
56	Linkage of Osteoporosis to Chromosome 20p12 and Association to BMP2. PLoS Biology, 2003, 1, e69.	2.6	222