Yihua Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9220312/publications.pdf

Version: 2024-02-01

199 13,990 56 112
papers citations h-index g-index

201 201 201 19707
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical Communications, 2012, 48, 3686.	2.2	1,845
2	Facile preparation and upconversion luminescence of graphene quantum dots. Chemical Communications, 2011, 47, 2580-2582.	2.2	734
3	Preparation of graphene–TiO ₂ composites with enhanced photocatalytic activity. New Journal of Chemistry, 2011, 35, 353-359.	1.4	538
4	Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nanoscale, 2014, 6, 15080-15089.	2.8	509
5	One-pot hydrothermal synthesis of graphenequantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New Journal of Chemistry, 2012, 36, 97-101.	1.4	460
6	Transition metals (Fe, Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions. Journal of Materials Chemistry A, 2016, 4, 1694-1701.	5. 2	460
7	A novel hydrogen peroxide biosensor based on Au–graphene–HRP–chitosan biocomposites. Electrochimica Acta, 2010, 55, 3055-3060.	2.6	358
8	Carbon dots as fluorescent probes for "off–on―detection of Cu2+ and l-cysteine in aqueous solution. Biosensors and Bioelectronics, 2014, 51, 330-335.	5. 3	278
9	Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. Chemical Communications, 2011, 47, 764-766.	2.2	273
10	Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe–N-Doped Graphene-Like Carbon Hybrids as Efficient Bifunctional Oxygen Electrocatalysts. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21511-21520.	4.0	262
11	Enriched graphitic N-doped carbon-supported Fe ₃ O ₄ nanoparticles as efficient electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 7281-7287.	5.2	235
12	Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system. Scientific Reports, 2015, 5, 10632.	1.6	186
13	In situ assembly of graphene sheets-supported SnS2 nanoplates into 3D macroporous aerogels for high-performance lithium ion batteries. Journal of Power Sources, 2013, 237, 178-186.	4.0	182
14	Nitrogen and Phosphorus Dualâ€Doped Hierarchical Porous Carbon Foams as Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction Reactions. Chemistry - A European Journal, 2014, 20, 3106-3112.	1.7	179
15	Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites. Nanoscale, 2017, 9, 2178-2187.	2.8	179
16	Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. Journal of Materials Chemistry A, 2014, 2, 9040.	5.2	170
17	One-pot preparation of graphene/Fe3O4 composites by a solvothermal reaction. New Journal of Chemistry, 2010, 34, 2950.	1.4	154
18	Hollow mesoporous NiCo ₂ O ₄ nanocages as efficient electrocatalysts for oxygen evolution reaction. Dalton Transactions, 2015, 44, 4148-4154.	1.6	151

#	Article	IF	CITATIONS
19	Electric Papers of Graphene-Coated Co ₃ O ₄ Fibers for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2013, 5, 997-1002.	4.0	145
20	Room-Temperature Synthesis of Mn-Doped Cesium Lead Halide Quantum Dots with High Mn Substitution Ratio. Journal of Physical Chemistry Letters, 2017, 8, 4167-4171.	2.1	139
21	CsPbBr ₃ Perovskite Quantum Dots-Based Monolithic Electrospun Fiber Membrane as an Ultrastable and Ultrasensitive Fluorescent Sensor in Aqueous Medium. Journal of Physical Chemistry Letters, 2016, 7, 4253-4258.	2.1	137
22	Multifunctional Magnetic Composite Microspheres with in Situ Growth Au Nanoparticles: A Highly Efficient Catalyst System. Journal of Physical Chemistry C, 2011, 115, 1614-1619.	1.5	132
23	Flexible 3D porous CuO nanowire arrays for enzymeless glucose sensing: in situ engineered versus ex situ piled. Nanoscale, 2015, 7, 559-569.	2.8	131
24	Dispersed CuO Nanoparticles on a Silicon Nanowire for Improved Performance of Nonenzymatic H ₂ O ₂ Detection. ACS Applied Materials & Interfaces, 2014, 6, 7055-7062.	4.0	123
25	Electrocatalytic Oxidation of Glucose by the Glucose Oxidase Immobilized in Grapheneâ€Auâ€Nafion Biocomposite. Electroanalysis, 2010, 22, 259-264.	1.5	122
26	Ultrasound-Triggered Smart Drug Release from Multifunctional Coreâ^'Shell Capsules One-Step Fabricated by Coaxial Electrospray Method. Langmuir, 2011, 27, 1175-1180.	1.6	119
27	Enhanced visible light photocatalytic activity of interlayer-isolated triplex Ag@SiO2@TiO2 core–shell nanoparticles. Nanoscale, 2013, 5, 3359.	2.8	119
28	Activated nitrogen-doped carbon nanofibers with hierarchical pore as efficient oxygen reduction reaction catalyst for microbial fuel cells. Journal of Power Sources, 2014, 266, 36-42.	4.0	113
29	Tailored graphene-encapsulated mesoporous Co3O4 composite microspheres for high-performance lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 17278.	6.7	112
30	Dynamically Formed Surfactant Assembly at the Electrified Electrode–Electrolyte Interface Boosting CO ₂ Electroreduction. Journal of the American Chemical Society, 2022, 144, 6613-6622.	6.6	106
31	CoP nanoparticles anchored on N,P-dual-doped graphene-like carbon as a catalyst for water splitting in non-acidic media. Nanoscale, 2018, 10, 2603-2612.	2.8	96
32	2D nanosheets-based novel architectures: Synthesis, assembly and applications. Nano Today, $2016,11,483-520.$	6.2	95
33	A Highly Efficient Catalyst toward Oxygen Reduction Reaction in Neutral Media for Microbial Fuel Cells. Industrial & Engineering Chemistry Research, 2013, 52, 6076-6082.	1.8	93
34	Multifunctional Fe ₃ O ₄ @Ag/SiO ₂ /Au Core–Shell Microspheres as a Novel SERS-Activity Label via Long-Range Plasmon Coupling. Langmuir, 2013, 29, 690-695.	1.6	92
35	2D Photonic Crystal Hydrogel Sensor for Tear Glucose Monitoring. ACS Omega, 2018, 3, 3211-3217.	1.6	87
36	Iron oxide containing graphene/carbon nanotube based carbon aerogel as an efficient E-Fenton cathode for the degradation of methyl blue. Electrochimica Acta, 2016, 200, 75-83.	2.6	86

#	Article	IF	Citations
37	Sprayâ€Assisted Coil–Globule Transition for Scalable Preparation of Waterâ€Resistant CsPbBr ₃ @PMMA Perovskite Nanospheres with Application in Live Cell Imaging. Small, 2018, 14, e1803156.	5.2	85
38	Highly dual-doped multilayer nanoporous graphene: efficient metal-free electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 12642-12645.	5.2	83
39	Multimetallic Ni–Mo/Cu nanowires as nonprecious and efficient full water splitting catalyst. Journal of Materials Chemistry A, 2017, 5, 4207-4214.	5.2	83
40	Amperometric glutamate biosensor based on self-assembling glutamate dehydrogenase and dendrimer-encapsulated platinum nanoparticles onto carbon nanotubes. Talanta, 2007, 73, 438-443.	2.9	80
41	Upconversion fluorescent strip sensor for rapid determination of Vibrio anguillarum. Nanoscale, 2014, 6, 3804-3809.	2.8	79
42	3D nitrogen-doped graphene foams embedded with ultrafine TiO2 nanoparticles for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 11124.	5.2	78
43	Graphene/carbon-coated Fe ₃ O ₄ nanoparticle hybrids for enhanced lithium storage. Journal of Materials Chemistry A, 2015, 3, 2361-2369.	5. 2	78
44	Biosensor Based on Self-Assembling Glucose Oxidase and Dendrimer-Encapsulated Pt Nanoparticles on Carbon Nanotubes for Glucose Detection. Electroanalysis, 2007, 19, 717-722.	1.5	77
45	Perovskite quantum dots encapsulated in electrospun fiber membranes as multifunctional supersensitive sensors for biomolecules, metal ions and pH. Nanoscale Horizons, 2017, 2, 225-232.	4.1	77
46	Preparation and Application of Mediatorâ€Free H ₂ O ₂ Biosensors of Grapheneâ€Fe ₃ O ₄ Composites. Electroanalysis, 2011, 23, 862-869.	1.5	75
47	Preparation and characterization of core-shell monodispersed magnetic silica microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 231, 123-129.	2.3	74
48	Multifunctional Fe ₃ O ₄ @TiO ₂ @Au magnetic microspheres as recyclable substrates for surface-enhanced Raman scattering. Nanoscale, 2014, 6, 5971-5979.	2.8	71
49	Microwave-solvothermal synthesis of Fe3O4 magnetic nanoparticles. Materials Letters, 2013, 107, 23-26.	1.3	68
50	In-situ SERS monitoring of reaction catalyzed by multifunctional Fe3O4@TiO2@Ag-Au microspheres. Applied Catalysis B: Environmental, 2017, 205, 11-18.	10.8	67
51	Immobilization of horseradish peroxidase in three-dimensional macroporous TiO2 matrices for biosensor applications. Electrochimica Acta, 2009, 54, 2823-2827.	2.6	65
52	Metal-enhanced fluorescence of carbon dots adsorbed Ag@SiO2 core-shell nanoparticles. RSC Advances, 2012, 2, 1765.	1.7	63
53	In Situ Loading of Cu ₂ O Active Sites on Island-like Copper for Efficient Electrochemical Reduction of Nitrate to Ammonia. ACS Applied Materials & Samp; Interfaces, 2022, 14, 6680-6688.	4.0	62
54	Amperometric biosensor based on carbon nanotubes coated with polyaniline/dendrimer-encapsulated Pt nanoparticles for glucose detection. Materials Science and Engineering C, 2009, 29, 1306-1310.	3.8	60

#	Article	IF	CITATIONS
55	Hierarchical interconnected macro-/mesoporous Co-containing N-doped carbon for efficient oxygen reduction reactions. Journal of Materials Chemistry A, 2013, 1, 12074.	5.2	59
56	Hierarchical porous iron and nitrogen co-doped carbons as efficient oxygen reduction electrocatalysts in neutral media. Journal of Power Sources, 2014, 265, 246-253.	4.0	59
57	Photocatalytic and antibacterial properties of Au-decorated Fe3O4@mTiO2 core–shell microspheres. Applied Catalysis B: Environmental, 2014, 156-157, 314-322.	10.8	58
58	Plasmon-enhanced efficient dye-sensitized solar cells using core–shell-structured β-NaYF ₄ :Yb,Er@SiO ₂ @Au nanocomposites. Journal of Materials Chemistry A, 2014, 2, 16523-16530.	5.2	57
59	Synthesis of Magnetite Nanoparticles by Precipitation with Forced Mixing. Journal of Nanoparticle Research, 1999, 1, 393-396.	0.8	56
60	Boosting water oxidation electrocatalysts with surface engineered amorphous cobalt hydroxide nanoflakes. Nanoscale, 2018, 10, 12991-12996.	2.8	55
61	Highly stable CsPbBr ₃ @SiO ₂ nanocomposites prepared <i>via</i> confined condensation for use as a luminescent ink. Chemical Communications, 2018, 54, 8064-8067.	2.2	53
62	Local structure tuning in Fe-N-C catalysts through support effect for boosting CO2 electroreduction. Applied Catalysis B: Environmental, 2020, 272, 118960.	10.8	53
63	Sensitive Biosensors Based on (Dendrimer Encapsulated Pt Nanoparticles)/Enzyme Multilayers. Electroanalysis, 2007, 19, 698-703.	1.5	52
64	Self-assembled CNTs/CdS/dehydrogenase hybrid-based amperometric biosensor triggered by photovoltaic effect. Biosensors and Bioelectronics, 2008, 24, 319-323.	5.3	52
65	A Glucose Biosensor Based on Immobilization of Glucose Oxidase into 3D Macroporous TiO ₂ . Electroanalysis, 2008, 20, 2223-2228.	1.5	50
66	Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays. Dalton Transactions, 2013, 42, 14324.	1.6	50
67	Tracking structural evolution: <i>operando</i> regenerative CeOx/Bi interface structure for high-performance CO2 electroreduction. National Science Review, 2021, 8, nwaa187.	4.6	50
68	Photoluminescence enhancement of carbon dots by gold nanoparticles conjugated via PAMAM dendrimers. Nanoscale, 2013, 5, 11200.	2.8	49
69	Porous CoS nanosheets coated by N and S doped carbon shell on graphene foams for free-standing and flexible lithium ion battery anodes: Influence of void spaces, shell and porous nanosheet. Electrochimica Acta, 2018, 271, 242-251.	2.6	48
70	Biodistribution study of carbogenic dots in cells and in vivo for optical imaging. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	47
71	Gold-coated silica-fiber hybrid materials for application in a novel hydrogen peroxide biosensor. Biosensors and Bioelectronics, 2012, 34, 132-136.	5.3	47
72	Au decorated Fe ₃ O ₄ @TiO ₂ magnetic composites with visible light-assisted enhanced catalytic reduction of 4-nitrophenol. RSC Advances, 2015, 5, 50454-50461.	1.7	47

#	Article	IF	CITATIONS
73	Three-dimensionally grown thorn-like Cu nanowire arrays by fully electrochemical nanoengineering for highly enhanced hydrazine oxidation. Nanoscale, 2016, 8, 5810-5814.	2.8	47
74	Magnetic composite microspheres with exposed {001} faceted TiO2 shells: a highly active and selective visible-light photocatalyst. Journal of Materials Chemistry, 2012, 22, 13341.	6.7	46
75	An enhanced biosensor for glutamate based on self-assembled carbon nanotubes and dendrimer-encapsulated platinum nanobiocomposites-doped polypyrrole film. Analytica Chimica Acta, 2007, 597, 145-150.	2.6	45
76	Tailored anisotropic magnetic conductive film assembled from graphene-encapsulated multifunctional magnetic composite microspheres. Journal of Materials Chemistry, 2012, 22, 545-550.	6.7	45
77	Sculpturing metal foams toward bifunctional 3D copper oxide nanowire arrays for pseudo-capacitance and enzyme-free hydrogen peroxide detection. Journal of Materials Chemistry A, 2015, 3, 8734-8741.	5.2	45
78	Preparation of CsPbBr ₃ @PS composite microspheres with high stability by electrospraying. Journal of Materials Chemistry C, 2018, 6, 7971-7975.	2.7	45
79	Designed synthesis of graphene–TiO2–SnO2 ternary nanocomposites as lithium-ion anode materials. New Journal of Chemistry, 2013, 37, 3671.	1.4	44
80	Multifunctional MnO ₂ nanosheet-modified Fe ₃ O ₄ @SiO ₂ /NaYF ₄ :Yb, Er nanocomposites as novel drug carriers. Dalton Transactions, 2014, 43, 451-457.	1.6	44
81	Photoelectrochemical glucose biosensor incorporating CdS nanoparticles. Particuology, 2009, 7, 347-352.	2.0	42
82	A novel catalyst based on electrospun silver-doped silica fibers with ribbon morphology. Journal of Colloid and Interface Science, 2010, 341, 303-310.	5.0	42
83	Dendrimerâ€encapsulated Pt nanoparticles/polyaniline nanofibers for glucose detection. Journal of Applied Polymer Science, 2008, 109, 1802-1807.	1.3	41
84	Photoluminescent carbon–nitrogen quantum dots as efficient electrocatalysts for oxygen reduction. Nanoscale, 2015, 7, 2003-2008.	2.8	41
85	Pyrolysis of conjugated nanoporous polycarbazoles to mesoporous N-doped carbon nanotubes as efficient electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 4507-4512.	5.2	41
86	(PAH/PSS)5 microcapsules templated on silica core: Encapsulation of anticancer drug DOX and controlled release study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 264, 49-54.	2.3	38
87	Electrocatalytic activity of Pt doped TiO2 nanotubes catalysts for glucose determination. Journal of Alloys and Compounds, 2010, 500, 247-251.	2.8	38
88	Photonic crystal pH and metal cation sensors based on poly(vinyl alcohol) hydrogel. New Journal of Chemistry, 2012, 36, 1051.	1.4	37
89	Ethanol-assisted multi-sensitive poly(vinyl alcohol) photonic crystal sensor. Chemical Communications, 2011, 47, 5530-5532.	2.2	36
90	Synergistic Effect of Platinum Single Atoms and Nanoclusters Boosting Electrocatalytic Hydrogen Evolution. CCS Chemistry, 2021, 3, 2539-2547.	4.6	36

#	Article	IF	CITATIONS
91	A polymer-coated template-confinement CsPbBr ₃ perovskite quantum dot composite. Nanoscale, 2021, 13, 6586-6591.	2.8	34
92	Facile and controllable fabrication of three-dimensionally quasi-ordered macroporous TiO2 for high performance lithium-ion battery applications. New Journal of Chemistry, 2013, 37, 1578.	1.4	33
93	Atomically dispersed Au catalysts supported on CeO ₂ foam: controllable synthesis and CO oxidation reaction mechanism. Nanoscale, 2017, 9, 16817-16825.	2.8	33
94	Physically Controlled Cross-Linking in Gelated Crystalline Colloidal Array Photonic Crystals. ACS Applied Materials & Diterfaces, 2010, 2, 1499-1504.	4.0	32
95	Multifunctional gadolinium-labeled silica-coated Fe ₃ O ₄ and CulnS ₂ nanoparticles as a platform for in vivo tri-modality magnetic resonance and fluorescence imaging. Journal of Materials Chemistry B, 2015, 3, 2873-2882.	2.9	32
96	Aerosol synthesis of Graphene-Fe3O4 hollow hybrid microspheres for heterogeneous Fenton and electro-Fenton reaction. Journal of Environmental Chemical Engineering, 2016, 4, 2469-2476.	3.3	32
97	Halide Ion Intercalated Electrodeposition Synthesis of Co ₃ O ₄ Nanosheets with Tunable Pores on Graphene Foams as Free-Standing and Flexible Li-Ion Battery Anodes. ACS Applied Energy Materials, 2018, 1, 1239-1251.	2.5	31
98	Preparation and characterization of photocatalytic carbon dots-sensitized electrospun titania nanostructured fibers. Materials Research Bulletin, 2013, 48, 232-237.	2.7	30
99	Synthesis of CdSe nanoparticles into the pores of mesoporous silica microspheres. Acta Materialia, 2008, 56, 1144-1150.	3.8	29
100	Synthesis of monodisperse water-stable surface Pb-rich CsPbCl ₃ nanocrystals for efficient photocatalytic CO ₂ reduction. Nanoscale, 2020, 12, 11842-11846.	2.8	29
101	Morphology and structure of nanosized TiO2 particles synthesized by gas-phase reaction. Materials Chemistry and Physics, 2000, 66, 51-57.	2.0	28
102	Dendrimer-encapsulated Pt nanoparticles on mesoporous silica for glucose detection. Journal of Solid State Electrochemistry, 2011, 15, 511-517.	1.2	28
103	Demonstration of Photoluminescence and Metalâ€Enhanced Fluorescence of Exfoliated MoS ₂ . ChemPhysChem, 2012, 13, 699-702.	1.0	28
104	Solvent-assisted poly(vinyl alcohol) gelated crystalline colloidal array photonic crystals. Soft Matter, 2011, 7, 915-921.	1.2	27
105	Multifunctional gadolinium-labeled silica-coated core/shell quantum dots for magnetic resonance and fluorescence imaging of cancer cells. RSC Advances, 2014, 4, 20641-20648.	1.7	27
106	Synthesis of CsPbBr ₃ perovskite nanocrystals with the sole ligand of protonated (3-aminopropyl)triethoxysilane. Journal of Materials Chemistry C, 2019, 7, 7201-7206.	2.7	27
107	In situ synthesis of sulfide-coated polystyrene composites for the fabrication of photonic crystals. Journal of Colloid and Interface Science, 2006, 301, 130-136.	5.0	26
108	Fabrication and characterization of mesoporous TiO2/polypyrrole-based nanocomposite for electrorheological fluid. Materials Research Bulletin, 2008, 43, 3263-3269.	2.7	26

#	Article	IF	Citations
109	Nitrogen-doped Fe ₃ C@C particles as an efficient heterogeneous photo-assisted Fenton catalyst. RSC Advances, 2017, 7, 15168-15175.	1.7	26
110	Tuning Optical Properties of Lead-Free 2D Tin-Based Perovskites with Carbon Chain Spacers. Journal of Physical Chemistry C, 2019, 123, 31279-31285.	1.5	26
111	Impacts on carbon dioxide electroreduction of cadmium sulfides <i>via</i> continuous surface sulfur vacancy engineering. Chemical Communications, 2020, 56, 563-566.	2.2	26
112	CoO nanosheets derived from electrodeposited cobalt metal towards high performance lithium ion batteries. Electrochimica Acta, 2016, 222, 1300-1307.	2.6	25
113	Multiwalled Carbon Nanotubes Incorporated with Dendrimer Encapsulated with Pt Nanoparticles: An Attractive Material for Sensitive Biosensors. Chemistry Letters, 2006, 35, 326-327.	0.7	24
114	ENFET glucose biosensor produced with mesoporous silica microspheres. Materials Science and Engineering C, 2007, 27, 736-740.	3.8	24
115	Prolongedâ€release performance of perfume encapsulated by tailoring mesoporous silica spheres. Flavour and Fragrance Journal, 2008, 23, 29-34.	1.2	24
116	Effective Singlet Oxygen Generation in Silicaâ€Coated CsPbBr ₃ Quantum Dots through Energy Transfer for Photocatalysis. ChemSusChem, 2020, 13, 682-687.	3.6	24
117	Gold/mesoporous silica-fiber core-shell hybrid nanostructure: a potential electron transfer mediator in a bio-electrochemical system. New Journal of Chemistry, 2010, 34, 2166.	1.4	23
118	Facile synthesis of upconversion luminescent mesoporous Y2O3:Er microspheres and metal enhancement using gold nanoparticles. RSC Advances, 2012, 2, 10592.	1.7	23
119	Solar-assisted dual chamber microbial fuel cell with a CulnS ₂ photocathode. RSC Advances, 2014, 4, 23790-23796.	1.7	23
120	Layered Confinement Reaction: Atomicâ€evel Dispersed Iron–Nitrogen Coâ€Doped Ultrathin Carbon Nanosheets for CO ₂ Electroreduction. ChemSusChem, 2019, 12, 2644-2650.	3.6	23
121	Stretch induced photoluminescence enhanced perovskite quantum dot polymer composites. Journal of Materials Chemistry C, 2020, 8, 1413-1420.	2.7	23
122	Characterization of SnO2 films deposited by d.c. gas discharge activating reaction evaporation onto amorphous and crystalline substrates. Thin Solid Films, 1993, 224, 82-86.	0.8	22
123	Electrorheological behavior of urea-doped mesoporous TiO2 suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 280, 71-75.	2.3	22
124	Amperometric glucose biosensor based on platinum nanoparticle encapsulated with a clay. Mikrochimica Acta, 2010, 171, 233-239.	2.5	22
125	Multifunctional manganese-doped core–shell quantum dots for magnetic resonance and fluorescence imaging of cancer cells. New Journal of Chemistry, 2013, 37, 3076.	1.4	22
126	Mn-doped 2D Sn-based perovskites with energy transfer from self-trapped excitons to dopants for warm white light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 8502-8506.	2.7	22

#	Article	IF	CITATIONS
127	Highly dispersed secondary building unit-stabilized binary metal center on a hierarchical porous carbon matrix for enhanced oxygen evolution reaction. Nanoscale, 2021, 13, 1213-1219.	2.8	22
128	Tailoring charge transfer in perovskite quantum dots/black phosphorus nanosheets photocatalyst via aromatic molecules. Applied Surface Science, 2021, 545, 149012.	3.1	22
129	Electrochemical synthesis of magnetic nanoparticles within mesoporous silica microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 294, 287-291.	2.3	21
130	ENFET glucose biosensor produced with dendrimer encapsulated Pt nanoparticles. Materials Science and Engineering C, 2008, 28, 1236-1241.	3.8	21
131	Carbon nanotubes coated with platinum nanoparticles as anode of biofuel cell. Particuology, 2012, 10, 450-455.	2.0	21
132	Photoelectrochemical Detection of H ₂ O ₂ Based on Flowerâ€Like CulnS ₂ â€Graphene Hybrid. Electroanalysis, 2014, 26, 573-580.	1.5	21
133	Electrorheological behavior of copper phthalocyanine-doped mesoporous TiO2 suspensions. Journal of Colloid and Interface Science, 2006, 294, 499-503.	5.0	20
134	CsPbBr3 quantum dots photodetectors boosting carrier transport via molecular engineering strategy. Nano Research, 2021, 14, 4038-4045.	5.8	20
135	Properties of Dendrimer-Encapsulated Pt Nanoparticles Doped Polypyrrole Composite Films and Their Electrocatalytic Activity for Glucose Oxidation. Electroanalysis, 2007, 19, 1677-1682.	1,5	19
136	Mesoporous Silica Spheres as Microreactors for Performing CdS Nanocrystal Synthesis. Crystal Growth and Design, 2008, 8, 4494-4498.	1.4	19
137	Confined growth of CuO, NiO, and Co3O4 nanocrystals in mesoporous silica (MS) spheres. Journal of Alloys and Compounds, 2011, 509, 2970-2975.	2.8	19
138	Microbial fuel cell cathode with dendrimer encapsulated Pt nanoparticles as catalyst. Journal of Power Sources, 2011, 196, 10611-10615.	4.0	19
139	Dynamic determination of Cu ⁺ roles for CO ₂ reduction on electrochemically stable Cu ₂ O-based nanocubes. Journal of Materials Chemistry A, 2022, 10, 8459-8465.	5.2	19
140	A novel strategy for the aqueous synthesis of down-/up-conversion nanocomposites for dual-modal cell imaging and drug delivery. Journal of Materials Chemistry B, 2014, 2, 8372-8377.	2.9	18
141	A proton-responsive ensemble using mesocellular foam supports capped with N,O-carboxymethyl chitosan for controlled release of bioactive proteins. Journal of Materials Chemistry B, 2015, 3, 2281-2285.	2.9	18
142	Performance optimization in dye-sensitized solar cells with \hat{l}^2 -NaYF4:Yb3+,Er3+@SiO2@TiO2 mesoporous microspheres as multi-functional photoanodes. Electrochimica Acta, 2016, 211, 92-100.	2.6	18
143	One-pot synthesis of polyaniline-doped in mesoporous TiO2 and its electrorheological behavior. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 137, 213-216.	1.7	17
144	Fabrication of TiO2/CdS composite fiber via an electrospinning method. New Journal of Chemistry, 2010, 34, 1116.	1.4	17

#	Article	IF	CITATIONS
145	The Effect of the Coordination Environment of Atomically Dispersed Fe and N Coâ€doped Carbon Nanosheets on CO 2 Electroreduction. ChemElectroChem, 2020, 7, 4767-4772.	1.7	17
146	Pomegranate-like Ti-doped LiNi0.4Mn1.6O4 5ÂV-class cathode with superior high-voltage cycle and rate performance for Li-ion batteries. Chemical Engineering Science, 2021, 231, 116297.	1.9	16
147	Inverse Opal of Polyaniline for Biosensors Prepared by Electrochemical and Self-Assembly Techniques. Journal of the Electrochemical Society, 2008, 155, J23.	1.3	15
148	Preparation of azithromycin microcapsules by a layer-by-layer self-assembly approach and release behaviors of azithromycin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 362, 135-139.	2.3	15
149	Efficient electrocatalytic formic acid oxidation over PdAu-manganese oxide/carbon. Journal of Colloid and Interface Science, 2021, 593, 244-250.	5.0	15
150	Fabrication and electrochemical property of Ag-doped SiO2 nanostructured ribbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 356, 120-125.	2.3	14
151	Enhanced Fluorescence of Graphene Oxide by Well-Controlled Au@SiO2 Core-Shell Nanoparticles. Journal of Fluorescence, 2014, 24, 137-141.	1.3	14
152	Subnanoâ€Sized Pt–Au Alloyed Clusters as Enhanced Cocatalyst for Photocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2019, 14, 2112-2115.	1.7	13
153	Electrorheological behavior of copper phthalocyanine-doped MCM-41 suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 220, 131-138.	2.3	12
154	Fabrication and characterization of cerium-doped titania inverse opal by sol–gel method. Materials Chemistry and Physics, 2007, 106, 209-214.	2.0	12
155	Synthesis of ZnS nanoparticles into the pore of mesoporous silica spheres. Materials Letters, 2009, 63, 1068-1070.	1.3	12
156	Photoelectronic properties of horseradish peroxidase-functionalized CdSe/silica mesoporous composite and its sensing towards hydrogen peroxide. Journal of Solid State Electrochemistry, 2011, 15, 731-736.	1.2	12
157	Rich Bismuthâ€Oxygen Bonds in Bismuth Derivatives from Bi ₂ S ₃ Preâ€Catalysts Promote the Electrochemical Reduction of CO ₂ . ChemElectroChem, 2020, 7, 2864-2868.	1.7	12
158	An ultrasonic atomization spray strategy for constructing hydrophobic and hydrophilic synergistic surfaces as gas diffusion layers for proton exchange membrane fuel cells. Journal of Power Sources, 2020, 451, 227784.	4.0	12
159	Stable Bismuthâ€Doped Lead Halide Perovskite Coreâ€Shell Nanocrystals by Surface Segregation Effect. Small, 2022, 18, e2104399.	5.2	12
160	Preparation of silica-sustained electrospun polyvinylpyrrolidone fibers with uniform mesopores via oxidative removal of template molecules by H2O2 treatment. Materials Research Bulletin, 2010, 45, 830-837.	2.7	11
161	Preparation of monodispersed mesoporous silica spheres with tunable pore size and pore-size effects on adsorption of Au nanoparticles and urease. Materials Science and Engineering C, 2011, 31, 166-172.	3.8	11
162	Preparation of Coâ€"N carbon nanosheet oxygen electrode catalyst by controlled crystallization of cobalt salt precursors for all-solid-state Alâ€"air battery. RSC Advances, 2018, 8, 22193-22198.	1.7	11

#	Article	IF	CITATIONS
163	Efficient CO ₂ Electroreduction on Ag ₂ S Nanodots Modified CdS Nanorods as Cooperative Catalysts. ChemCatChem, 2021, 13, 1161-1164.	1.8	11
164	Electrostatic layer-by-layer self-assembly of PAMAM–CdS nanocomposites on MF microspheres. Materials Chemistry and Physics, 2007, 105, 315-319.	2.0	10
165	Au@TiO2 double-shelled octahedral nanocages with improved catalytic properties. Dalton Transactions, 2014, 43, 15111-15118.	1.6	10
166	Photoelectrochemical biofuel cell with dendrimer-encapsulated CdSe nanoparticles-sensitized titanium dioxide as the photoanode. New Journal of Chemistry, 2014, 38, 2300.	1.4	10
167	Synthesis of Gramâ€Scale Ultrastable Mnâ€Doped 2D Perovskites for Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2021, 8, 2002175.	1.9	10
168	Polyacrylic acid- <i>b</i> -polystyrene-passivated CsPbBr ₃ perovskite quantum dots with high photoluminescence quantum yield for light-emitting diodes. Chemical Communications, 2022, 58, 4235-4238.	2.2	10
169	The process of coating on ultrafine particles by surface hydrolysis reaction in a fluidized bed reactor. Surface and Coatings Technology, 2000, 135, 14-17.	2.2	9
170	Fabrication of core–shell latex spheres with CdS/polyelectrolyte composite multilayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 264, 215-218.	2.3	9
171	Fabrication of CulnS2–TiO2 composite fibers by using electrospinning coupled with solvothermal method. RSC Advances, 2012, 2, 4055.	1.7	9
172	Flexible Free-Standing Hierarchical Carbon-Coated CoP ₂ Nanosheets for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 7253-7262.	2.5	9
173	Solid State Melting Confinement Reaction Synthesis of CsPbBr ₃ Quantum Dots Embedded in Mesoporous SiO ₂ Microspheres for Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2022, 9, .	1.9	9
174	Fabrication and characterization of cerium-doped barium titanate inverse opal by sol–gel method. Journal of Solid State Chemistry, 2007, 180, 301-306.	1.4	8
175	Polyacrylamide–metal nanocomposites: one-pot synthesis, antibacterial properties, and thermal stability. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	8
176	Scalable solid-phase synthesis of defect-rich graphene for oxygen reduction electrocatalysis. Green Energy and Environment, 2023, 8, 224-232.	4.7	8
177	Atomically dispersed gold-supported catalysts: preparation and potential for low-temperature CO oxidation. Materials Today Nano, 2018, 4, 54-69.	2.3	7
178	Carbon-loaded ultrafine fully crystalline phase palladium-based nanoalloy PdCoNi/C: facile synthesis and high activity for formic acid oxidation. Nanoscale, 2019, 11, 17334-17339.	2.8	7
179	Operando generated copperâ€based catalyst enabling efficient electrosynthesis of 2,5â€bis(hydroxymethyl)furan. Fundamental Research, 2023, 3, 763-769.	1.6	7
180	Nanostructured SiC ceramics prepared by a new processâ€"Crystallization of interfacial glass. Scripta Materialia, 1996, 7, 453-459.	0.5	6

#	Article	IF	CITATIONS
181	Materials science communication effect of doped silicon on structure and magnetic properties of \hat{I}^3 -fe2o3 particles. Materials Chemistry and Physics, 1997, 51, 169-173.	2.0	6
182	Morphological structure of nanometer TiO2–Al2O3 composite powders synthesized in high temperature gas phase reactor. Chemical Engineering Journal, 2001, 84, 405-411.	6.6	6
183	Confined Co ₉ S ₈ into a defective carbon matrix as a bifunctional oxygen electrocatalyst for rechargeable zinc–air batteries. Catalysis Science and Technology, 2019, 9, 5757-5762.	2.1	6
184	Construction of hierarchical functional nanomaterials for energy conversion and storage. Particuology, 2020, 48, 34-47.	2.0	6
185	Fabrication of fluorescent hollow capsule with CdS–polyelectrolyte composite films. Materials Letters, 2006, 60, 3447-3450.	1.3	5
186	Plasmonic Au Decorated Singleâ€crystalâ€like <scp>TiO₂â€NaYF₄</scp> Mesoporous Microspheres for Enhanced Broadband Photocatalysis. Chinese Journal of Chemistry, 2017, 35, 949-956.	2.6	5
187	Targeting study of gelatin adsorbed clodronate in reticuloendothelial system and its potential application in immune thrombocytopenic purpura of rat model. Journal of Controlled Release, 2006, 114, 202-208.	4.8	4
188	The Proportion of Feâ€N X , N Doping Species and Fe 3 C to Oxygen Catalytic Activity in Coreâ€Shell Feâ€N/C Electrocatalyst. Chemistry - an Asian Journal, 2020, 15, 310-318.	1.7	4
189	Electrophoreticâ€Driven In Situ Polymerization Depositing Highâ€Quality Perovskite Films for Photodetectors. Advanced Optical Materials, 2022, 10, .	3.6	4
190	Highly stable halide perovskites for photocatalysis <i>via</i> multi-dimensional structure design and <i>in situ</i> phase transition. Dalton Transactions, 2022, 51, 11316-11324.	1.6	4
191	In SituPolymerization of Pyrrole in Mesoporous Silica and Application to Electrode Modification. International Journal of Polymer Analysis and Characterization, 2010, 15, 155-165.	0.9	3
192	Preparation of photoluminescent carbon dots-embedded polyelectrolyte microcapsules. Particuology, 2013, 11, 334-339.	2.0	3
193	Anisotropic photoelectric film assembled from mesoporous silica (MS)@CuO@FeS2 composite microspheres for improving photoelectric conversion. Journal of Colloid and Interface Science, 2013, 402, 50-57.	5.0	3
194	Polymerized Crystalline Colloidal Array Photonic Crystal with Enhanced Mechanical Property. Chemistry Letters, 2015, 44, 1566-1568.	0.7	3
195	Bienzymatic glucose biosensor based on co-immobilization of glucose oxidase and horseradish peroxidase on gold nanoparticles-mesoporous silica matrix. , 2008, , .		2
196	Synthesis and Characterization of Complex of Glycyl-L-Glutamine and Bismuth Trichloride. Protein and Peptide Letters, 2008, 15, 1094-1099.	0.4	2
197	The aggregate structure of coralloid ZnOx films. Solid State Communications, 1993, 86, 175-177.	0.9	1
198	Stem cell growth and migration on nanofibrous polymer scaffolds and micro-fluidic channels on Silicon-Chip., 2009,,.		1

ARTICLE IF CITATIONS

199 The enhanced sensing and catalytic activity with polymer-based colloidal photonic crystals., 2019,,
237-263.