Maricelis Acevedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9220052/publications.pdf

Version: 2024-02-01

414414 394421 1,123 36 19 32 citations h-index g-index papers 37 37 37 1130 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genome-Wide Association Mapping for Resistance to Leaf and Stripe Rust in Winter-Habit Hexaploid Wheat Landraces. PLoS ONE, 2015, 10, e0129580.	2.5	120
2	A scoping review of adoption of climate-resilient crops by small-scale producers in low- and middle-income countries. Nature Plants, 2020, 6, 1231-1241.	9.3	116
3	Genomeâ€Wide Association Mapping of Leaf Rust Response in a Durum Wheat Worldwide Germplasm Collection. Plant Genome, 2016, 9, plantgenome2016.01.0008.	2.8	95
4	The <i>rpg4</i> -Mediated Resistance to Wheat Stem Rust (<i>Puccinia graminis</i>) in Barley (<i>Hordeum vulgare</i>) Requires <i>Rpg5</i> , a Second NBS-LRR Gene, and an Actin Depolymerization Factor. Molecular Plant-Microbe Interactions, 2013, 26, 407-418.	2.6	78
5	Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theoretical and Applied Genetics, 2011, 123, 1029-1041.	3.6	58
6	Evaluation of Genetic Diversity and Host Resistance to Stem Rust in USDA NSGC Durum Wheat Accessions. Plant Genome, 2017, 10, plantgenome2016.07.0071.	2.8	55
7	Mapping resistance to the Ug99 race group of the stem rust pathogen in a spring wheat landrace. Theoretical and Applied Genetics, 2015, 128, 605-612.	3.6	54
8	Mapping of Novel Leaf Rust and Stem Rust Resistance Genes in the Portuguese Durum Wheat Landrace Pl 192051. G3: Genes, Genomes, Genetics, 2019, 9, 2535-2547.	1.8	51
9	Climate change impacts the spread potential of wheat stem rust, a significant crop disease. Environmental Research Letters, 2019, 14, 124053.	5.2	47
10	High-density mapping of a resistance gene to Ug99 from the Iranian landrace PI 626573. Molecular Breeding, 2014, 34, 871-881.	2.1	41
11	Inverse gene-for-gene interactions contribute additively to tan spot susceptibility in wheat. Theoretical and Applied Genetics, 2017, 130, 1267-1276.	3.6	38
12	Field Resistance to the Ug99 Race Group of the Stem Rust Pathogen in Spring Wheat Landraces. Plant Disease, 2013, 97, 882-890.	1.4	34
13	Genome-wide association analysis unveils novel QTLs for seminal root system architecture traits in Ethiopian durum wheat. BMC Genomics, 2021, 22, 20.	2.8	33
14	Molecular Mapping of Stem Rust Resistance Loci Effective Against the Ug99 Race Group of the Stem Rust Pathogen and Validation of a Single Nucleotide Polymorphism Marker Linked to Stem Rust Resistance Gene <i>Sr28</i> . Phytopathology, 2017, 107, 208-215.	2.2	32
15	Multilocus Genotypes of the Wheat Leaf Rust Fungus <i>Puccinia triticina </i> in Worldwide Regions Indicate Past and Current Long-Distance Migration. Phytopathology, 2019, 109, 1453-1463.	2.2	31
16	Inheritance and Bulked Segregant Analysis of Leaf Rust and Stem Rust Resistance in Durum Wheat Genotypes. Phytopathology, 2017, 107, 1496-1506.	2.2	27
17	Identification and Validation of Quantitative Trait Loci for Partial Resistance to Crown Rust in Oat. Phytopathology, 2010, 100, 511-521.	2.2	26
18	Genetically Divergent Types of the Wheat Leaf Fungus <i>Puccinia triticina </i> in Ethiopia, a Center of Tetraploid Wheat Diversity. Phytopathology, 2016, 106, 380-385.	2.2	26

#	Article	IF	CITATIONS
19	Endemic and panglobal genetic groups, and divergence of host-associated forms in worldwide collections of the wheat leaf rust fungus Puccinia triticina as determined by genotyping by sequencing. Heredity, 2020, 124, 397-409.	2.6	24
20	<i>Uromyces appendiculatus</i> in Honduras: Pathogen Diversity and Host Resistance Screening. Plant Disease, 2013, 97, 652-661.	1.4	18
21	â€~Prosper': A High‥ielding Hard Red Spring Wheat Cultivar Adapted to the North Central Plains of the USA. Journal of Plant Registrations, 2013, 7, 75-80.	0.5	18
22	Rapid protocol for visualization of rust fungi structures using fluorochrome Uvitex 2B. Plant Methods, 2015, 11, 54.	4.3	15
23	Genotyping-by-Sequencing for the Study of Genetic Diversity in <i>Puccinia triticina</i> Plant Disease, 2020, 104, 752-760.	1.4	15
24	Phenotypic Diversity of Puccinia helianthi (Sunflower Rust) in the United States from 2011 and 2012. Plant Disease, 2015, 99, 1604-1609.	1.4	14
25	Dissection of the multigenic wheat stem rust resistance present in the Montenegrin spring wheat accession PI 362698. BMC Genomics, 2018, 19, 67.	2.8	12
26	A Genomic Comparison of Homoeologous Recombinants of the <i>Lr19</i> (T4) Translocation in Wheat. Crop Science, 2014, 54, 565-575.	1.8	7
27	Mapping a Resistance Gene to <i>Puccinia graminis</i> f. sp. <i>tritici</i> in the Bread Wheat Cultivar ' Atlabas'. Plant Disease, 2019, 103, 2337-2344.	1.4	7
28	Unraveling the Wheat Stem Rust Infection Process on Barley Genotypes Through Relative qPCR and Fluorescence Microscopy. Phytopathology, 2015, 105, 707-712.	2.2	5
29	DNA fingerprinting at farm level to map wheat variety adoption across Nepal. Crop Science, 2021, 61, 3275-3287.	1.8	5
30	†Velva' Spring Wheat: An Adapted Cultivar to North-Central Plains of the United States with High Agronomic and Quality Performance. Journal of Plant Registrations, 2014, 8, 32-37.	0.5	5
31	An improved method to quantifyPuccinia coronataf. sp.avenaeDNA in the hostAvena sativa. Canadian Journal of Plant Pathology, 2010, 32, 215-224.	1.4	4
32	â€~Elginâ€ND' Spring Wheat: A Newly Adapted Cultivar to the Northâ€Central Plains of the United States with High Agronomic and Quality Performance. Journal of Plant Registrations, 2016, 10, 130-134.	0.5	4
33	Genomic Analysis and Delineation of the Tan Spot Susceptibility Locus Tsc1 in Wheat. Frontiers in Plant Science, 2022, 13, 793925.	3.6	4
34	Assessment of wheat variety adoption in Bangladesh through DNA fingerprinting. Crop Science, 2021, 61, 3564-3577.	1.8	3
35	VIEWPOINT: Five recommendations for an inclusive and collaborative One CGIAR. Food Policy, 2020, 91, 101831.	6.0	1
36	Rust, Risk, and Germplasm Exchange: The Borlaug Global Rust Initiative. Indian Journal of Plant Genetic Resources, 2016, 29, 417.	0.1	0

3