Lucia Manni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9220032/publications.pdf

Version: 2024-02-01

		257101	301761
80	2,121	24	39
papers	citations	h-index	g-index
86	86	86	1085
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Morphological evidence that the molecularly determined <i>Ciona intestinalis</i> type A and type B are different species: <i>Ciona robusta</i> and <i>Ciona intestinalis</i> lournal of Zoological Systematics and Evolutionary Research, 2015, 53, 186-193.	0.6	206
2	Botryllus schlosseri: A model ascidian for the study of asexual reproduction. Developmental Dynamics, 2007, 236, 335-352.	0.8	126
3	Morphological Differences between Larvae of the Ciona intestinalis Species Complex: Hints for a Valid Taxonomic Definition of Distinct Species. PLoS ONE, 2015, 10, e0122879.	1.1	88
4	Neurogenic and non-neurogenic placodes in ascidians. The Journal of Experimental Zoology, 2004, 302B, 483-504.	1.4	86
5	Novel, secondary sensory cell organ in ascidians: In search of the ancestor of the vertebrate lateral line. Journal of Comparative Neurology, 2003, 461, 236-249.	0.9	85
6	Neurogenic role of the neural gland in the development of the ascidian,Botryllus schlosseri (Tunicata, Urochordata)., 1998, 394, 230-241.		60
7	Common and divergent pathways in alternative developmental processes of ascidians. BioEssays, 2006, 28, 902-912.	1.2	60
8	Complex mammalian-like haematopoietic system found in a colonial chordate. Nature, 2018, 564, 425-429.	13.7	60
9	Hair cells in ascidians and the evolution of lateral line placodes. Evolution & Development, 2004, 6, 379-381.	1.1	58
10	Stomodeal and neurohypophysial placodes inCiona Intestinalis: insights into the origin of the pituitary gland. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2005, 304B, 324-339.	0.6	51
11	Sexual and asexual reproduction in the colonial ascidian <scp><i>B</i></scp> <i>otryllus schlosseri</i>	0.8	48
12	Embryonic versus blastogenetic development in the compound ascidianBotryllus schlosseri: Insights fromPitx expression patterns. Developmental Dynamics, 2005, 232, 468-478.	0.8	47
13	Ontology for the Asexual Development and Anatomy of the Colonial Chordate Botryllus schlosseri. PLoS ONE, 2014, 9, e96434.	1.1	45
14	Coronal organ of ascidians and the evolutionary significance of secondary sensory cells in chordates. Journal of Comparative Neurology, 2006, 495, 363-373.	0.9	40
15	Sixty years of experimental studies on the blastogenesis of the colonial tunicate Botryllus schlosseri. Developmental Biology, 2019, 448, 293-308.	0.9	40
16	Are neural crest and placodes exclusive to vertebrates?. Evolution & Development, 2001, 3, 297-298.	1.1	38
17	Hovering between death and life: Natural apoptosis and phagocytes in the blastogenetic cycle of the colonial ascidian Botryllus schlosseri. Developmental and Comparative Immunology, 2010, 34, 272-285.	1.0	33
18	Effect of polyphenolic phytochemicals on ectopic oxidative phosphorylation in rod outer segments of bovine retina. British Journal of Pharmacology, 2015, 172, 3890-3903.	2.7	30

#	Article	IF	Citations
19	Cell reorganisation during epithelial fusion and perforation: The case of ascidian branchial fissures. Developmental Dynamics, 2002, 224, 303-313.	0.8	29
20	Tubular sprouting as a mode of vascular formation in a colonial ascidian (tunicata). Developmental Dynamics, 2007, 236, 719-731.	0.8	28
21	Vascular regeneration and angiogenicâ€like sprouting mechanism in a compound ascidian is similar to vertebrates. Evolution & Development, 2008, 10, 591-605.	1.1	27
22	Germline cell formation and gonad regeneration in solitary and colonial ascidians. Developmental Dynamics, 2011, 240, 299-308.	0.8	27
23	New findings in ATP supply in rod outer segments: Insights for retinopathies. Biology of the Cell, 2013, 105, 345-358.	0.7	27
24	Development of the motor nervous system in ascidians. Journal of Comparative Neurology, 2002, 443, 124-135.	0.9	26
25	The ontology of the anatomy and development of the solitary ascidian Ciona: the swimming larva and its metamorphosis. Scientific Reports, 2020, 10, 17916.	1.6	26
26	Differentiation of papillae and rostral sensory neurons in the larva of the ascidian <i>Botryllus schlosseri</i> (Tunicata). Journal of Comparative Neurology, 2010, 518, 547-566.	0.9	25
27	Sexual and asexual development: two distinct programs producing the same tunicate. Cell Reports, 2021, 34, 108681.	2.9	25
28	A panâ€metazoan concept for adult stem cells: the wobbling <scp>Penrose</scp> landscape. Biological Reviews, 2022, 97, 299-325.	4.7	25
29	Ultrastructural Study of Oogenesis in the Compound Ascidian <i>Botryllus schlosseri</i> /i>(Tunicata). Acta Zoologica, 1994, 75, 101-112.	0.6	24
30	The peripheral nervous system of an ascidian, Botryllus schlosseri, as revealed by cholinesterase activity. Invertebrate Biology, 2001, 120, 185-198.	0.3	24
31	Evolutionary diversification of secondary mechanoreceptor cells in tunicata. BMC Evolutionary Biology, 2013, 13, 112.	3.2	24
32	Fixation, description and DNA barcode of a neotype for Botryllus schlosseriÂ(Pallas, 1766) (Tunicata,) Tj ETQq0 C	0 rgBT /O	verlock 10 Tf
33	Evolutionary conservation of the placodal transcriptional network during sexual and asexual development in chordates. Developmental Dynamics, 2013, 242, 752-766.	0.8	22
34	Egg Envelope Cytodifferentiation in the Colonial Ascidian <i>Botryllus schlosseri</i> (Tunicata). Acta Zoologica, 1993, 74, 103-113.	0.6	21
35	Functional expression of electron transport chain complexes in mouse rod outer segments. Biochimie, 2014, 102, 78-82.	1.3	21
36	Testing an unusual in vivo vessel network model: a method to study angiogenesis in the colonial tunicate Botryllus schlosseri. Scientific Reports, 2014, 4, 6460.	1.6	21

#	Article	IF	Citations
37	An unprecedented taxonomic revision of a model organism: the paradigmatic case of <i>Ciona robusta</i> and <i>Ciona intestinalis</i> Zoologica Scripta, 2017, 46, 521-522.	0.7	21
38	Recurrent phagocytosis-induced apoptosis in the cyclical generation change of the compound ascidian Botryllus schlosseri. Developmental and Comparative Immunology, 2016, 62, 8-16.	1.0	20
39	Transcriptome dynamics in the asexual cycle of the chordate Botryllus schlosseri. BMC Genomics, 2016, 17, 275.	1.2	20
40	Does hair cell differentiation predate the vertebrate appearance?. Brain Research Bulletin, 2008, 75, 331-334.	1.4	19
41	Natural Apoptosis During the Blastogenetic Cycle of the Colonial Ascidian (i>Botryllus schlosseri (i): A Morphological Analysis. Zoological Science, 2010, 27, 96-102.	0.3	19
42	Muscle differentiation in a colonial ascidian: organisation, gene expression and evolutionary considerations. BMC Developmental Biology, 2009, 9, 48.	2.1	17
43	Developmental signature, synaptic connectivity and neurotransmission are conserved between vertebrate hair cells and tunicate coronal cells. Journal of Comparative Neurology, 2018, 526, 957-971.	0.9	17
44	Differential expression of the five redox complexes in the retinal mitochondria or rod outer segment disks is consistent with their different functionality. FASEB BioAdvances, 2020, 2, 315-324.	1.3	17
45	Stem Cells and Innate Immunity in Aquatic Invertebrates: Bridging Two Seemingly Disparate Disciplines for New Discoveries in Biology. Frontiers in Immunology, 2021, 12, 688106.	2.2	17
46	Modulation of the rod outer segment aerobic metabolism diminishes the production of radicals due to light absorption. Free Radical Biology and Medicine, 2018, 117, 110-118.	1.3	16
47	Extramitochondrial energy production in platelets. Biology of the Cell, 2018, 110, 97-108.	0.7	16
48	3D reconstruction of structures of hatched larva and young juvenile of the larvacean Oikopleura dioica using SBF-SEM. Scientific Reports, 2021, 11, 4833.	1.6	16
49	Are Rod Outer Segment ATP-ase and ATP-Synthase Activity Expression of the Same Protein?. Cellular and Molecular Neurobiology, 2013, 33, 637-649.	1.7	15
50	Differentiation and Induced Sensorial Alteration of the Coronal Organ in the Asexual Life of a Tunicate. Integrative and Comparative Biology, 2018, 58, 317-328.	0.9	15
51	Myocardial overexpression of ANKRD1 causes sinus venosus defects and progressive diastolic dysfunction. Cardiovascular Research, 2020, 116, 1458-1472.	1.8	15
52	And Then There Were Threeâ€ : Extreme Regeneration Ability of the Solitary Chordate Polycarpa mytiligera. Frontiers in Cell and Developmental Biology, 2021, 9, 652466.	1.8	15
53	The oral sensory structures of Thaliacea (Tunicata) and consideration of the evolution of hair cells in chordata. Journal of Comparative Neurology, 2013, 521, 2756-2771.	0.9	14
54	Proteome of Bovine Mitochondria and Rod Outer Segment Disks: Commonalities and Differences. Journal of Proteome Research, 2018, 17, 918-925.	1.8	14

#	Article	IF	CITATIONS
55	Life history and ecological genetics of the colonial ascidian Botryllus schlosseri. Zoologischer Anzeiger, 2015, 257, 54-70.	0.4	13
56	Regeneration ability in four stolidobranch ascidians: Ecological and evolutionary implications. Journal of Experimental Marine Biology and Ecology, 2019, 519, 151184.	0.7	13
57	Amphioxus neuroglia: Molecular characterization and evidence for early compartmentalization of the developing nerve cord. Glia, 2021, 69, 1654-1678.	2.5	12
58	Variability of hair cells in the coronal organ of ascidians (Chordata, Tunicata). Canadian Journal of Zoology, 2010, 88, 567-578.	0.4	10
59	Expression of a <i>Musashi</i> â€like gene in sexual and asexual development of the colonial chordate <i>Botryllus schlosseri</i> and phylogenetic analysis of the protein group. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 562-573.	0.6	10
60	Two distinct evolutionary conserved neural degeneration pathways characterized in a colonial chordate. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
61	Relationships among hemocytes, tunic cells, germ cells, and accessory cells in the colonial ascidian Botryllus schlosseri. , 2011, 316B, 284-295.		9
62	Sclareol modulates free radical production in the retinal rod outer segment by inhibiting the ectopic f1fo-atp synthase. Free Radical Biology and Medicine, 2020, 160, 368-375.	1.3	9
63	Inhibitory Action of Antidiabetic Drugs on the Free Radical Production by the Rod Outer Segment Ectopic Aerobic Metabolism. Antioxidants, 2020, 9, 1133.	2.2	9
64	An unusual membrane system in the oocyte of the ascidian Botryllus schlosseri. Tissue and Cell, 1994, 26, 403-412.	1.0	8
65	Cytodifferentiation of hair cells during the development of a basal chordate. Hearing Research, 2013, 304, 188-199.	0.9	8
66	Mouth opening is mediated by separation of dorsal and ventral daughter cells of the lip precursor cells in the larvacean, Oikopleura dioica. Development Genes and Evolution, 2020, 230, 315-327.	0.4	8
67	Ovulation and embryo-parent relationships in <i>Botrylloides leachi</i> (Ascidiacea, Tunicata). Invertebrate Reproduction and Development, 1994, 25, 215-225.	0.3	7
68	Yamanaka Factors in the Budding Tunicate Botryllus schlosseri Show a Shared Spatio-Temporal Expression Pattern in Chordates. Frontiers in Cell and Developmental Biology, 2022, 10, 782722.	1.8	7
69	Oogenesis and oocyte envelope differentiation in the viviparous ascidianBotrylloides violaceus. Invertebrate Reproduction and Development, 1995, 27, 167-180.	0.3	6
70	Characterization of Ambra1 in asexual cycle of a non-vertebrate chordate, the colonial tunicate Botryllus schlosseri, and phylogenetic analysis of the protein group in Bilateria. Molecular Phylogenetics and Evolution, 2016, 95, 46-57.	1.2	5
71	Spawning induction, development and culturing of the solitary ascidian Polycarpa mytiligera, an emerging model for regeneration studies. Frontiers in Zoology, 2020, 17, 19.	0.9	5
72	The diterpene Manool extracted from Salvia tingitana lowers free radical production in retinal rod outer segments by inhibiting the extramitochondrial F $1\mathrm{F}$ o ATP synthase. Cell Biochemistry and Function, 2021, 39, 528-535.	1.4	4

#	Article	IF	CITATIONS
73	Stem Cells in Sexual and Asexual Reproduction of Botryllus schlosseri (Ascidiacea, Tunicata): An Overview., 2009,, 267-280.		4
74	Morphological Study and 3D Reconstruction of the Larva of the Ascidian Halocynthia roretzi. Journal of Marine Science and Engineering, 2022, $10,11.$	1.2	4
75	Evidence of Oxidative Phosphorylation in Zebrafish Photoreceptor Outer Segments at Different Larval Stages. Journal of Histochemistry and Cytochemistry, 2018, 66, 497-509.	1.3	3
76	SATRAP: SOLiD Assembler TRAnslation Program. PLoS ONE, 2015, 10, e0137436.	1.1	3
77	Data on four apoptosis-related genes in the colonial tunicate Botryllus schlosseri. Data in Brief, 2016, 8, 142-152.	0.5	1
78	Studying Regeneration in Ascidians: An Historical Overview. Methods in Molecular Biology, 2022, 2450, 27-48.	0.4	1
79	The juxtatesticular body of jawfishes (Teleostei, Opistognathidae): Comparative morphology and fine structure. Journal of Morphology, 1995, 226, 237-246.	0.6	0
80	Germline development during embryogenesis of the larvacean, Oikopleura dioica. Developmental Biology, 2021, 481, 188-200.	0.9	0