Juergen Popp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9219885/publications.pdf Version: 2024-02-01

		6592	11581
877	34,958	79	135
papers	citations	h-index	g-index
927	927	927	26948
all docs	docs citations	times ranked	citing authors

ILIEDCEN DODD

#	Article	IF	CITATIONS
1	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	7.3	2,153
2	Surface-enhanced Raman spectroscopy (SERS): progress and trends. Analytical and Bioanalytical Chemistry, 2012, 403, 27-54.	1.9	712
3	Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chemical Society Reviews, 2017, 46, 3945-3961.	18.7	466
4	SERS: a versatile tool in chemical and biochemical diagnostics. Analytical and Bioanalytical Chemistry, 2008, 390, 113-124.	1.9	461
5	Tracking heavy water (D ₂ O) incorporation for identifying and sorting active microbial cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E194-203.	3.3	359
6	Sample size planning for classification models. Analytica Chimica Acta, 2013, 760, 25-33.	2.6	346
7	Selfâ€Healing Polymer Coatings Based on Crosslinked Metallosupramolecular Copolymers. Advanced Materials, 2013, 25, 1634-1638.	11.1	319
8	Raman Spectroscopy-A Prospective Tool in the Life Sciences. ChemPhysChem, 2003, 4, 14-30.	1.0	302
9	Raman and CARS microspectroscopy of cells and tissues. Analyst, The, 2009, 134, 1046.	1.7	275
10	Chemotaxonomic Identification of Single Bacteria by Micro-Raman Spectroscopy: Application to Clean-Room-Relevant Biological Contaminations. Applied and Environmental Microbiology, 2005, 71, 1626-1637.	1.4	267
11	Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab on A Chip, 2011, 11, 1013.	3.1	266
12	Vibrational spectroscopy—A powerful tool for the rapid identification of microbial cells at the singleâ€cell level. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 104-113.	1.1	241
13	Isolation and identification of bacteria by means of Raman spectroscopy. Advanced Drug Delivery Reviews, 2015, 89, 105-120.	6.6	238
14	A Reproducible Surface-Enhanced Raman Spectroscopy Approach. Online SERS Measurements in a Segmented Microfluidic System. Analytical Chemistry, 2007, 79, 1542-1547.	3.2	233
15	Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions. Analyst, The, 2005, 130, 1543.	1.7	225
16	How to pre-process Raman spectra for reliable and stable models?. Analytica Chimica Acta, 2011, 704, 47-56.	2.6	210
17	Towards a Detailed Understanding of Bacterial Metabolism—Spectroscopic Characterization ofStaphylococcus Epidermidis. ChemPhysChem, 2007, 8, 124-137.	1.0	201
18	The Bouguerâ€Beerâ€Lambert Law: Shining Light on the Obscure. ChemPhysChem, 2020, 21, 2029-2046.	1.0	190

#	Article	IF	CITATIONS
19	Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments. Lab on A Chip, 2011, 11, 1484.	3.1	185
20	The application of Raman spectroscopy for the detection and identification of microorganisms. Journal of Raman Spectroscopy, 2016, 47, 89-109.	1.2	185
21	Labelâ€Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches. Angewandte Chemie - International Edition, 2017, 56, 4392-4430.	7.2	177
22	Raman spectroscopy at the beginning of the twenty-first century. Journal of Raman Spectroscopy, 2006, 37, 20-28.	1.2	176
23	Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert Review of Molecular Diagnostics, 2015, 15, 773-787.	1.5	176
24	On the Way to Nanometer-Sized Information of the Bacterial Surface by Tip-Enhanced Raman Spectroscopy. ChemPhysChem, 2006, 7, 1428-1430.	1.0	174
25	Molecular pathology <i>via</i> IR and Raman spectral imaging. Journal of Biophotonics, 2013, 6, 855-886.	1.1	167
26	Raman to the limit: tipâ€enhanced Raman spectroscopic investigations of a single tobacco mosaic virus. Journal of Raman Spectroscopy, 2009, 40, 240-243.	1.2	162
27	Photochemical Fate: The First Step Determines Efficiency of H ₂ Formation with a Supramolecular Photocatalyst. Angewandte Chemie - International Edition, 2010, 49, 3981-3984.	7.2	162
28	Cultivation-Free Raman Spectroscopic Investigations of Bacteria. Trends in Microbiology, 2017, 25, 413-424.	3.5	161
29	Plasmonic nanostructures for surface enhanced spectroscopic methods. Analyst, The, 2016, 141, 756-793.	1.7	159
30	Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications. Analyst, The, 2017, 142, 1022-1047.	1.7	158
31	How Delocalized Is N,N,Nâ€~,Nâ€~-Tetraphenylphenylenediamine Radical Cation? An Experimental and Theoretical Study on the Electronic and Molecular Structure. Journal of the American Chemical Society, 2004, 126, 7834-7845.	6.6	156
32	Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis. Analytical Chemistry, 2014, 86, 5278-5285.	3.2	152
33	Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications. Chemical Society Reviews, 2016, 45, 1819-1849.	18.7	151
34	From molecular structure to tissue architecture: collagen organization probed by SHG microscopy. Journal of Biophotonics, 2013, 6, 129-142.	1.1	150
35	The many facets of Raman spectroscopy for biomedical analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 699-717.	1.9	149
36	Label-free SERS in biological and biomedical applications: Recent progress, current challenges and opportunities. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 197, 56-77.	2.0	148

#	Article	IF	CITATIONS
37	Quantitative Online Detection of Low oncentrated Drugs via a SERS Microfluidic System. ChemPhysChem, 2007, 8, 2665-2670.	1.0	147
38	Employing Theories Far beyond Their Limits—The Case of the (Boguerâ€) Beer–Lambert Law. ChemPhysChem, 2016, 17, 1948-1955.	1.0	142
39	Spectral unmixing and clustering algorithms for assessment of single cells by Raman microscopic imaging. Theoretical Chemistry Accounts, 2011, 130, 1249-1260.	0.5	139
40	Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis. Journal of Biomedical Optics, 2011, 16, 021113.	1.4	138
41	Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications. Journal of Biomedical Optics, 2012, 17, 040801.	1.4	137
42	Culture Independent Raman Spectroscopic Identification of Urinary Tract Infection Pathogens: A Proof of Principle Study. Analytical Chemistry, 2013, 85, 9610-9616.	3.2	133
43	Photophysics of an Intramolecular Hydrogenâ€Evolving Ru–Pd Photocatalyst. Chemistry - A European Journal, 2009, 15, 7678-7688.	1.7	132
44	In-vivo Raman spectroscopy: from basics to applications. Journal of Biomedical Optics, 2018, 23, 1.	1.4	132
45	Fast and Highly Sensitive Fiber-Enhanced Raman Spectroscopic Monitoring of Molecular H ₂ and CH ₄ for Point-of-Care Diagnosis of Malabsorption Disorders in Exhaled Human Breath. Analytical Chemistry, 2015, 87, 982-988.	3.2	125
46	Deepâ€UV surfaceâ€enhanced Raman scattering. Journal of Raman Spectroscopy, 2007, 38, 1379-1382.	1.2	122
47	Identification and differentiation of single cells from peripheral blood by Raman spectroscopic imaging. Journal of Biophotonics, 2010, 3, 579-587.	1.1	122
48	Gold Films Deposited over Regular Arrays of Polystyrene Nanospheres as Highly Effective SERS Substrates from Visible to NIR. Journal of Physical Chemistry B, 2006, 110, 23982-23986.	1.2	118
49	Noninvasive Imaging of Intracellular Lipid Metabolism in Macrophages by Raman Microscopy in Combination with Stable Isotopic Labeling. Analytical Chemistry, 2012, 84, 8549-8556.	3.2	114
50	A comparative Raman and CARS imaging study of colon tissue. Journal of Biophotonics, 2009, 2, 303-312.	1.1	110
51	Towards detection and identification of circulating tumour cells using Raman spectroscopy. Analyst, The, 2010, 135, 3178.	1.7	110
52	SERS-based detection of biomolecules. Nanophotonics, 2014, 3, 383-411.	2.9	109
53	Towards a specific characterisation of components on a cell surface—combined TERSâ€investigations of lipids and human cells. Journal of Raman Spectroscopy, 2009, 40, 1452-1457.	1.2	107
54	Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing. Optics Express, 2012, 20, 20156.	1.7	104

#	Article	IF	CITATIONS
55	Probing the enhancement mechanisms of SERS with p-aminothiophenol molecules adsorbed on self-assembled gold colloidal nanoparticles. Chemical Physics Letters, 2006, 422, 127-132.	1.2	103
56	Toward a Spectroscopic Hemogram: Raman Spectroscopic Differentiation of the Two Most Abundant Leukocytes from Peripheral Blood. Analytical Chemistry, 2012, 84, 5335-5342.	3.2	103
57	Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence. Planta, 2016, 243, 935-945.	1.6	101
58	Raman spectroscopic identification of single yeast cells. Journal of Raman Spectroscopy, 2005, 36, 377-379.	1.2	100
59	Quantitative SERS Analysis of Azorubine (E 122) in Sweet Drinks. Analytical Chemistry, 2015, 87, 2840-2844.	3.2	99
60	All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion. Optics Express, 2012, 20, 4484.	1.7	98
61	Combined Dielectrophoresis–Raman Setup for the Classification of Pathogens Recovered from the Urinary Tract. Analytical Chemistry, 2013, 85, 10717-10724.	3.2	97
62	Intrinsic self-healing polymers with a high E-modulus based on dynamic reversible urea bonds. NPG Asia Materials, 2017, 9, e420-e420.	3.8	97
63	Raman acoustic levitation spectroscopy of red blood cells and Plasmodium falciparum trophozoites. Lab on A Chip, 2007, 7, 1125.	3.1	96
64	Classification of lactic acid bacteria with UV-resonance Raman spectroscopy. Biopolymers, 2006, 82, 286-290.	1.2	95
65	Direct analysis of clinical relevant single bacterial cells from cerebrospinal fluid during bacterial meningitis by means of microâ€Raman spectroscopy. Journal of Biophotonics, 2009, 2, 70-80.	1.1	95
66	STXM and NanoSIMS Investigations on EPS Fractions before and after Adsorption to Goethite. Environmental Science & Technology, 2013, 47, 3158-3166.	4.6	95
67	Making a big thing of a small cell – recent advances in single cell analysis. Analyst, The, 2014, 139, 1237-1273.	1.7	95
68	Identification of secondary metabolites in medicinal and spice plants by NIR-FT-Raman microspectroscopic mapping. Analyst, The, 2004, 129, 926-930.	1.7	94
69	Vibrational spectroscopic characterization of fluoroquinolones. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 1505-1517.	2.0	94
70	Towards a quantitative SERS approach – online monitoring of analytes in a microfluidic system with isotopeâ€edited internal standards. Journal of Biophotonics, 2009, 2, 232-242.	1.1	94
71	Tuning of Photocatalytic Hydrogen Production and Photoinduced Intramolecular Electron Transfer Rates by Regioselective Bridging Ligand Substitution. ChemPhysChem, 2011, 12, 2101-2109.	1.0	93
72	Chemotaxonomic characterisation of essential oil plants by vibrational spectroscopy measurements. Vibrational Spectroscopy, 2004, 35, 81-86.	1.2	90

#	Article	IF	CITATIONS
73	Density functional and vibrational spectroscopic analysis of β-carotene. Journal of Raman Spectroscopy, 2003, 34, 413-419.	1.2	89
74	Chemometric analysis in Raman spectroscopy from experimental design to machine learning–based modeling. Nature Protocols, 2021, 16, 5426-5459.	5.5	89
75	Identification of single eukaryotic cells with micro-Raman spectroscopy. Biopolymers, 2006, 82, 312-316.	1.2	87
76	Identification of meat-associated pathogens via Raman microspectroscopy. Food Microbiology, 2014, 38, 36-43.	2.1	87
77	Discriminating Isogenic Cancer Cells and Identifying Altered Unsaturated Fatty Acid Content as Associated with Metastasis Status, Using K-Means Clustering and Partial Least Squares-Discriminant Analysis of Raman Maps. Analytical Chemistry, 2010, 82, 2797-2802.	3.2	86
78	Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microbial Biotechnology, 2017, 10, 175-188.	2.0	85
79	Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings. Applied Physics Letters, 2006, 88, 143121.	1.5	83
80	High-Throughput Screening Raman Spectroscopy Platform for Label-Free Cellomics. Analytical Chemistry, 2018, 90, 2023-2030.	3.2	83
81	The identification of microorganisms by micro-Raman spectroscopy. Journal of Molecular Structure, 2003, 661-662, 363-369.	1.8	81
82	On-Line Monitoring and Identification of Bioaerosols. Analytical Chemistry, 2006, 78, 2163-2170.	3.2	81
83	Raman Based Molecular Imaging and Analytics: A Magic Bullet for Biomedical Applications!?. Analytical Chemistry, 2016, 88, 133-151.	3.2	81
84	The application of a SERS fiber probe for the investigation of sensitive biological samples. Analyst, The, 2004, 129, 1193-1199.	1.7	80
85	Identification of water pathogens by Raman microspectroscopy. Water Research, 2014, 48, 179-189.	5.3	80
86	LOC-SERS: A Promising Closed System for the Identification of Mycobacteria. Analytical Chemistry, 2016, 88, 7998-8004.	3.2	80
87	Raman Spectroscopy as a Potential Tool for Detection of Brucella spp. in Milk. Applied and Environmental Microbiology, 2012, 78, 5575-5583.	1.4	79
88	Polymeric Halogenâ€Bondâ€Based Donor Systems Showing Selfâ€Healing Behavior in Thin Films. Angewandte Chemie - International Edition, 2017, 56, 4047-4051.	7.2	79
89	Highly Sensitive Broadband Raman Sensing of Antibiotics in Step-Index Hollow-Core Photonic Crystal Fibers. ACS Photonics, 2017, 4, 138-145.	3.2	79
90	Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing. Optics Express, 2012, 20, 21010.	1.7	78

#	Article	IF	CITATIONS
91	Endoscopic fiber probe for nonlinear spectroscopic imaging. Optica, 2017, 4, 496.	4.8	78
92	Biochemical imaging below the diffraction limit – probing cellular membrane related structures by tipâ€enhanced Raman spectroscopy (TERS). Journal of Biophotonics, 2010, 3, 455-461.	1.1	76
93	Vibrational spectroscopic studies to acquire a quality control method of Eucalyptus essential oils. Biopolymers, 2005, 78, 237-248.	1.2	75
94	Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs. Analytical Chemistry, 2013, 85, 6264-6271.	3.2	75
95	Application of Vibrational Spectroscopy and Imaging to Point-of-Care Medicine: A Review. Applied Spectroscopy, 2018, 72, 52-84.	1.2	75
96	Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps. Analytical and Bioanalytical Chemistry, 2013, 405, 2743-2746.	1.9	74
97	Fiber enhanced Raman gas spectroscopy. TrAC - Trends in Analytical Chemistry, 2018, 103, 230-238.	5.8	74
98	Characterization of bacterial growth and the influence of antibiotics by means of UV resonance Raman spectroscopy. Biopolymers, 2006, 82, 306-311.	1.2	73
99	Bioanalytical application of surface―and tipâ€enhanced <scp>R</scp> aman spectroscopy. Engineering in Life Sciences, 2012, 12, 131-143.	2.0	73
100	Localizing and Identifying Living Bacteria in an Abiotic Environment by a Combination of Raman and Fluorescence Microscopy. Analytical Chemistry, 2008, 80, 8568-8575.	3.2	72
101	Fiber optic probes for linear and nonlinear Raman applications – Current trends and future development. Laser and Photonics Reviews, 2013, 7, 698-731.	4.4	71
102	Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications. Optics Express, 2015, 23, 23968.	1.7	71
103	Common mistakes in cross-validating classification models. Analytical Methods, 2017, 9, 4410-4417.	1.3	71
104	UV Raman spectroscopy—A technique for biological and mineralogical in situ planetary studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 68, 1029-1035.	2.0	70
105	Identification of <i>Bacillus anthracis</i> via Raman Spectroscopy and Chemometric Approaches. Analytical Chemistry, 2012, 84, 9873-9880.	3.2	70
106	Studies of silicon nanoparticles uptake and biodegradation in cancer cells by Raman spectroscopy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1931-1940.	1.7	70
107	A shiftedâ€excitation Raman difference spectroscopy (SERDS) evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference. Journal of Raman Spectroscopy, 2016, 47, 198-209.	1.2	70
108	A comprehensive study of classification methods for medical diagnosis. Journal of Raman Spectroscopy, 2009, 40, 1759-1765.	1.2	69

#	Article	IF	CITATIONS
109	Spectroscopic Investigation of the Ultrafast Photoinduced Dynamics in π onjugated Terpyridines. ChemPhysChem, 2009, 10, 910-919.	1.0	68
110	Impact of fixation on in vitro cell culture lines monitored with Raman spectroscopy. Analyst, The, 2009, 134, 1154.	1.7	68
111	Checking and Improving Calibration of Raman Spectra using Chemometric Approaches. Zeitschrift Fur Physikalische Chemie, 2011, 225, 753-764.	1.4	68
112	Classification of inflammatory bowel diseases by means of Raman spectroscopic imaging of epithelium cells. Journal of Biomedical Optics, 2012, 17, 0760301.	1.4	68
113	Tumor margin identification and prediction of the primary tumor from brain metastases using FTIR imaging and support vector machines. Analyst, The, 2013, 138, 3983.	1.7	68
114	Automatization of spike correction in Raman spectra of biological samples. Chemometrics and Intelligent Laboratory Systems, 2016, 155, 1-6.	1.8	68
115	Toward Levofloxacin Monitoring in Human Urine Samples by Employing the LoC-SERS Technique. Journal of Physical Chemistry C, 2016, 120, 20613-20623.	1.5	68
116	SERS as an analytical tool in environmental science: The detection of sulfamethoxazole in the nanomolar range by applying a microfluidic cartridge setup. Analytica Chimica Acta, 2017, 949, 1-7.	2.6	68
117	Gaussian mixture discriminant analysis for the single-cell differentiation of bacteria using micro-Raman spectroscopy. Chemometrics and Intelligent Laboratory Systems, 2009, 96, 159-171.	1.8	67
118	Droplet formation via flow-through microdevices in Raman and surface enhanced Raman spectroscopy—concepts and applications. Lab on A Chip, 2011, 11, 3584.	3.1	66
119	Identification of primary tumors of brain metastases by Raman imaging and support vector machines. Chemometrics and Intelligent Laboratory Systems, 2012, 117, 224-232.	1.8	66
120	Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool. BMC Cancer, 2016, 16, 534.	1.1	66
121	A specific spectral signature of serum and plasma-derived extracellular vesicles for cancer screening. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 835-841.	1.7	66
122	Optimization of Raman-spectrum baseline correction in biological application. Analyst, The, 2016, 141, 2396-2404.	1.7	65
123	Simple Ciprofloxacin Resistance Test and Determination of Minimal Inhibitory Concentration within 2 h Using Raman Spectroscopy. Analytical Chemistry, 2018, 90, 1811-1818.	3.2	65
124	Cell wall investigations utilizing tip-enhanced Raman scattering. Journal of Microscopy, 2008, 229, 533-539.	0.8	64
125	Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy. Optics Express, 2012, 20, 26583.	1.7	63
126	Enhanced Raman multigas sensing – a novel tool for control and analysis of ¹³ CO ₂ labeling experiments in environmental research. Analyst, The, 2014, 139, 3879.	1.7	63

#	Article	IF	CITATIONS
127	Microarrayâ€Based Detection of Dye‣abeled DNA by SERRS Using Particles Formed by Enzymatic Silver Deposition. ChemPhysChem, 2008, 9, 867-872.	1.0	62
128	Substitution-controlled ultrafast excited-state processes in Ru–dppz-derivatives. Physical Chemistry Chemical Physics, 2010, 12, 1357-1368.	1.3	62
129	Advances in optical biopsy – correlation of malignancy and cell density of primary brain tumors using Raman microspectroscopic imaging. Analyst, The, 2012, 137, 5533.	1.7	62
130	Characterization of atherosclerotic plaque depositions by Raman and FTIR imaging. Journal of Biophotonics, 2013, 6, 110-121.	1.1	62
131	Detection of Pseudomonas aeruginosa Metabolite Pyocyanin in Water and Saliva by Employing the SERS Technique. Sensors, 2017, 17, 1704.	2.1	62
132	Towards translation of surface-enhanced Raman spectroscopy (SERS) to clinical practice: Progress and trends. TrAC - Trends in Analytical Chemistry, 2021, 134, 116122.	5.8	62
133	Synthesis and Characterisation of Poly(bipyridine)ruthenium Complexes as Building Blocks for Heterosupramolecular Arrays. European Journal of Inorganic Chemistry, 2008, 2008, 3310-3319.	1.0	61
134	The morphology of silver nanoparticles prepared by enzyme-induced reduction. Beilstein Journal of Nanotechnology, 2012, 3, 404-414.	1.5	61
135	In Vivo Characterization of Atherosclerotic Plaque Depositions by Raman-Probe Spectroscopy and in Vitro Coherent Anti-Stokes Raman Scattering Microscopic Imaging on a Rabbit Model. Analytical Chemistry, 2012, 84, 7845-7851.	3.2	61
136	Double antiresonant hollow core fiber – guidance in the deep ultraviolet by modified tunneling leaky modes. Optics Express, 2014, 22, 19131.	1.7	61
137	Complexity of fatty acid distribution inside human macrophages on single cell level using Raman micro-spectroscopy. Analytical and Bioanalytical Chemistry, 2014, 406, 7037-7046.	1.9	61
138	Fiberâ€based light sources for biomedical applications of coherent antiâ€Stokes Raman scattering microscopy. Laser and Photonics Reviews, 2015, 9, 435-451.	4.4	61
139	Deep learning a boon for biophotonics?. Journal of Biophotonics, 2020, 13, e201960186.	1.1	61
140	Confocal Micro-Raman Spectroscopy: Theory and Application to a Hybrid Polymer Coating. Applied Spectroscopy, 2002, 56, 536-540.	1.2	60
141	Identification of Biotic and Abiotic Particles by Using a Combination of Optical Tweezers and In Situ Raman Spectroscopy. ChemPhysChem, 2004, 5, 1159-1170.	1.0	60
142	Probing Innovative Microfabricated Substrates for their Reproducible SERS Activity. ChemPhysChem, 2008, 9, 758-762.	1.0	60
143	Three-Dimensional Molecular Mapping of a Multiple Emulsion by Means of CARS Microscopy. Journal of Physical Chemistry B, 2008, 112, 1420-1426.	1.2	59
144	The molecular mechanism of dual emission in terpyridine transition metal complexes—ultrafast investigations of photoinduced dynamics. Physical Chemistry Chemical Physics, 2011, 13, 1606-1617.	1.3	59

#	Article	IF	CITATIONS
145	Raman Spectroscopic Detection of Anthrax Endospores in Powder Samples. Angewandte Chemie - International Edition, 2012, 51, 5339-5342.	7.2	59
146	Polyacrylamid/Silver Composite Particles Produced via Microfluidic Photopolymerization for Single Particle-Based SERS Microsensorics. Analytical Chemistry, 2013, 85, 313-318.	3.2	59
147	THz Absorption in Fabric and Its Impact on Body Scanning for Security Application. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 999-1004.	2.0	59
148	Low-loss single-mode guidance in large-core antiresonant hollow-core fibers. Optics Letters, 2015, 40, 3432.	1.7	59
149	Periodic array-based substrates for surface-enhanced infrared spectroscopy. Nanophotonics, 2018, 7, 39-79.	2.9	59
150	The investigation of single bacteria by means of fluorescence staining and Raman spectroscopy. Journal of Raman Spectroscopy, 2007, 38, 369-372.	1.2	58
151	Microfabricated SERS-arrays with sharp-edged metallic nanostructures. Microelectronic Engineering, 2008, 85, 1792-1794.	1.1	58
152	Detection of thiopurine methyltransferase activity in lysed red blood cells by means of lab-on-a-chip surface enhanced Raman spectroscopy (LOC-SERS). Analytical and Bioanalytical Chemistry, 2011, 400, 2755-2761.	1.9	58
153	Cell type-specific delivery of short interfering RNAs by dye-functionalised theranostic nanoparticles. Nature Communications, 2014, 5, 5565.	5.8	58
154	Lab-on-a-Chip-Surface Enhanced Raman Scattering Combined with the Standard Addition Method: Toward the Quantification of Nitroxoline in Spiked Human Urine Samples. Analytical Chemistry, 2016, 88, 9173-9180.	3.2	58
155	Beer's Law – Why Absorbance Depends (Almost) Linearly on Concentration. ChemPhysChem, 2019, 20, 511-515.	1.0	58
156	Ultrafast Excited-State Excitation Dynamics in a Quasi-Two-Dimensional Light-Harvesting Antenna Based on Ruthenium(II) and Palladium(II) Chromophores. Chemistry - A European Journal, 2006, 12, 5105-5115.	1.7	57
157	<i>In Situ</i> Localization and Structural Analysis of the Malaria Pigment Hemozoin. Journal of Physical Chemistry B, 2007, 111, 11047-11056.	1.2	57
158	The First Photoexcitation Step of Ruthenium-Based Models for Artificial Photosynthesis Highlighted by Resonance Raman Spectroscopy. Journal of Physical Chemistry B, 2007, 111, 6078-6087.	1.2	57
159	SERS as tool for the analysis of DNA-chips in a microfluidic platform. Analytical and Bioanalytical Chemistry, 2010, 396, 1381-1384.	1.9	57
160	Monitoring the chemistry of self-healing by vibrational spectroscopy – current state and perspectives. Materials Today, 2014, 17, 57-69.	8.3	57
161	Tracking active groundwater microbes with D ₂ O labelling to understand their ecosystem function. Environmental Microbiology, 2018, 20, 369-384.	1.8	57
162	Raman microspectroscopy for microbiology. Nature Reviews Methods Primers, 2021, 1, .	11.8	57

#	Article	IF	CITATIONS
163	Raman and Fluorescence Spectra of Single Optically Trapped Microdroplets in Emulsions. Applied Spectroscopy, 1994, 48, 1166-1168.	1.2	56
164	Characterizing cytochrome c states – TERS studies of whole mitochondria. Chemical Communications, 2011, 47, 11453.	2.2	56
165	Surface-enhanced Raman spectroscopy (SERS) in food analytics: Detection of vitamins B2 and B12 in cereals. Talanta, 2016, 160, 289-297.	2.9	56
166	Copper nanostructures for chemical analysis using surface-enhanced Raman spectroscopy. TrAC - Trends in Analytical Chemistry, 2018, 108, 247-259.	5.8	56
167	Unsupervised unmixing of Raman microspectroscopic images for morphochemical analysis of non-dried brain tumor specimens. Analytical and Bioanalytical Chemistry, 2012, 403, 719-725.	1.9	55
168	Expanding Multimodal Microscopy by High Spectral Resolution Coherent Anti-Stokes Raman Scattering Imaging for Clinical Disease Diagnostics. Analytical Chemistry, 2013, 85, 6703-6715.	3.2	55
169	Investigation of Gas Exchange Processes in Peat Bog Ecosystems by Means of Innovative Raman Gas Spectroscopy. Analytical Chemistry, 2013, 85, 1295-1299.	3.2	55
170	LOC-SERS: towards point-of-care diagnostic of methotrexate. Analytical Methods, 2014, 6, 3943-3947.	1.3	55
171	Toward Culture-Free Raman Spectroscopic Identification of Pathogens in Ascitic Fluid. Analytical Chemistry, 2015, 87, 937-943.	3.2	55
172	Towards SERS based applications in food analytics: Lipophilic sensor layers for the detection of Sudan III in food matrices. Analytica Chimica Acta, 2015, 860, 43-50.	2.6	55
173	Multimodal Imaging Spectroscopy of Tissue. Annual Review of Analytical Chemistry, 2015, 8, 359-387.	2.8	55
174	Spectrometer calibration protocol for Raman spectra recorded with different excitation wavelengths. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 149, 544-549.	2.0	55
175	Protonation effects on the resonance Raman properties of a novel (terpyridine)Ru(4H-imidazole) complex: an experimental and theoretical case study. Physical Chemistry Chemical Physics, 2011, 13, 15580.	1.3	54
176	Deeper Understanding of Biological Tissue: Quantitative Correlation of MALDI-TOF and Raman Imaging. Analytical Chemistry, 2013, 85, 10829-10834.	3.2	54
177	Discrimination and classification of liver cancer cells and proliferation states by Raman spectroscopic imaging. Analyst, The, 2014, 139, 6036-6043.	1.7	54
178	Raman spectroscopy towards clinical application: drug monitoring and pathogen identification. International Journal of Antimicrobial Agents, 2015, 46, S35-S39.	1.1	54
179	Applications of coherent Raman scattering microscopies to clinical and biological studies. Analyst, The, 2015, 140, 3897-3909.	1.7	54
180	Beer's Lawâ€Why Integrated Absorbance Depends Linearly on Concentration. ChemPhysChem, 2019, 20, 2748-2753.	1.0	54

#	Article	IF	CITATIONS
181	Label-free CARS microscopy through a multimode fiber endoscope. Optics Express, 2019, 27, 30055.	1.7	54
182	Time Fluctuations and Imaging in the SERS Spectra of Fungal Hypha Grown on Nanostructured Substrates. Journal of Physical Chemistry B, 2007, 111, 12916-12924.	1.2	53
183	Raman spectroscopic detection of physiology changes in plasmid-bearing Escherichia coli with and without antibiotic treatment. Analytical and Bioanalytical Chemistry, 2011, 400, 2763-2773.	1.9	53
184	The Effect of Antimonate, Arsenate, and Phosphate on the Transformation of Ferrihydrite to Goethite, Hematite, Feroxyhyte, and Tripuhyite. Clays and Clay Minerals, 2013, 61, 11-25.	0.6	53
185	Self-healing mechanism of metallopolymers investigated by QM/MM simulations and Raman spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 12422.	1.3	53
186	Detection of vancomycin resistances in enterococci within 3 \hat{A} ½ hours. Scientific Reports, 2015, 5, 8217.	1.6	53
187	Morphology-sensitive Raman modes of the malaria pigment hemozoin. Analyst, The, 2009, 134, 1126.	1.7	52
188	Multimodal imaging to study the morphochemistry of basal cell carcinoma. Journal of Biophotonics, 2010, 3, 728-736.	1.1	52
189	Analysis of the cytochrome distribution via linear and nonlinear Raman spectroscopy. Analyst, The, 2010, 135, 908.	1.7	52
190	Protochlorophyllide a: A Comprehensive Photophysical Picture. ChemPhysChem, 2009, 10, 144-150.	1.0	51
191	Detection and Discrimination of Non-Melanoma Skin Cancer by Multimodal Imaging. Healthcare (Switzerland), 2013, 1, 64-83.	1.0	51
192	A SERS-based molecular sensor for selective detection and quantification of copper(II) ions. Sensors and Actuators B: Chemical, 2019, 279, 230-237.	4.0	51
193	UV Raman ImagingA Promising Tool for Astrobiology:Â Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites. Analytical Chemistry, 2007, 79, 1101-1108.	3.2	50
194	In situUV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark. Journal of Physical Chemistry B, 2007, 111, 4171-4177.	1.2	50
195	Analysis of single blood cells for CSF diagnostics via a combination of fluorescence staining and micro-Raman spectroscopy. Analyst, The, 2008, 133, 1416.	1.7	50
196	Dual Emission from Highly Conjugated 2,2′:6′:2″â€Terpyridine Complexes—A Potential Route to White Emitters. Macromolecular Rapid Communications, 2010, 31, 883-888.	2.0	50
197	Doubly resonant optical nanoantenna arrays for polarization resolved. Optics Express, 2010, 18, 4184.	1.7	50
198	Inorganic salts in atmospheric particulate matter: Raman spectroscopy as an analytical tool. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 115, 697-708.	2.0	50

#	Article	IF	CITATIONS
199	Multimodal mapping of human skin. British Journal of Dermatology, 2013, 169, 794-803.	1.4	50
200	Raman spectroscopic identification of single bacterial cells under antibiotic influence. Analytical and Bioanalytical Chemistry, 2014, 406, 3041-3050.	1.9	50
201	Online investigation of respiratory quotients in <i>Pinus sylvestris</i> and <i>Picea abies</i> during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry. Analyst, The, 2015, 140, 4473-4481.	1.7	50
202	Synthesis, Characterization, and Electroâ€Optical Properties of Zn ^{II} Complexes with Ï€â€Conjugated Terpyridine Ligands. ChemPhysChem, 2009, 10, 787-798.	1.0	49
203	Different contrast information obtained from CARS and nonresonant FWM images. Journal of Raman Spectroscopy, 2009, 40, 941-947.	1.2	49
204	Crisp and soft multivariate methods visualize individual cell nuclei in Raman images of liver tissue sections. Vibrational Spectroscopy, 2011, 55, 90-100.	1.2	49
205	Non-invasive depth profile imaging of the stratum corneum using confocal Raman microscopy: First insights into the method. European Journal of Pharmaceutical Sciences, 2013, 50, 601-608.	1.9	49
206	Monitoring of gas composition in a laboratory biogas plant using cavity enhanced Raman spectroscopy. Analyst, The, 2018, 143, 1358-1366.	1.7	49
207	Fiber-Enhanced Raman Gas Spectroscopy for ¹⁸ O– ¹³ C-Labeling Experiments. Analytical Chemistry, 2019, 91, 7562-7569.	3.2	49
208	All-in-one: a versatile gas sensor based on fiber enhanced Raman spectroscopy for monitoring postharvest fruit conservation and ripening. Analyst, The, 2016, 141, 2023-2029.	1.7	49
209	On the way to a quality control of the essential oil of fennel by means of Raman spectroscopy. Biopolymers, 2005, 77, 44-52.	1.2	48
210	Raman Spectroscopy-Compatible Inactivation Method for Pathogenic Endospores. Applied and Environmental Microbiology, 2010, 76, 2895-2907.	1.4	48
211	Raman Spectroscopy—An Innovative and Versatile Tool To Follow the Respirational Activity and Carbonate Biomineralization of Important Cave Bacteria. Analytical Chemistry, 2013, 85, 8708-8714.	3.2	48
212	Resonance-Raman spectro-electrochemistry of intermediates in molecular artificial photosynthesis of bimetallic complexes. Chemical Communications, 2014, 50, 5227.	2.2	48
213	Microbial respiration and natural attenuation of benzene contaminated soils investigated by cavity enhanced Raman multi-gas spectroscopy. Analyst, The, 2015, 140, 3143-3149.	1.7	48
214	Trace detection of tetrahydrocannabinol (THC) with a SERS-based capillary platform prepared by the in situ microwave synthesis of AgNPs. Analytica Chimica Acta, 2016, 939, 93-100.	2.6	48
215	Fiber enhanced Raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia. Analyst, The, 2016, 141, 6104-6115.	1.7	48
216	A Raman spectroscopic study of the adsorption of fibronectin and fibrinogen on titanium dioxide nanoparticles. Physical Chemistry Chemical Physics, 2004, 6, 5232-5236.	1.3	47

#	Article	IF	CITATIONS
217	Solvent Effects on the Excited-State Processes of Protochlorophyllide:Â A Femtosecond Time-Resolved Absorption Study. Journal of Physical Chemistry B, 2006, 110, 4399-4406.	1.2	47
218	Investigation of eucalyptus essential oil by using vibrational spectroscopy methods. Vibrational Spectroscopy, 2006, 42, 341-345.	1.2	47
219	Consolidated silica glass from nanoparticles. Journal of Solid State Chemistry, 2008, 181, 2442-2447.	1.4	47
220	Structural analysis of the antimalarial drug halofantrine by means of Raman spectroscopy and density functional theory calculations. Journal of Biomedical Optics, 2010, 15, 041516.	1.4	47
221	Combined fiber probe for fluorescence lifetime and Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2015, 407, 8291-8301.	1.9	47
222	Rapid monitoring of intermediate states and mass balance of nitrogen during denitrification by means of cavity enhanced Raman multi-gas sensing. Analytica Chimica Acta, 2015, 864, 39-47.	2.6	47
223	Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells. Analytica Chimica Acta, 2015, 894, 76-84.	2.6	47
224	Confocal Raman investigations on hybrid polymer coatings. Vibrational Spectroscopy, 2002, 29, 245-249.	1.2	46
225	Structural Analysis of the Anti-Malaria Active Agent Chloroquine under Physiological Conditions. Journal of Physical Chemistry B, 2007, 111, 1815-1822.	1.2	46
226	Ultrasensitivein situTracing of the Alkaloid Dioncophylline A in the Tropical LianaTriphyophyllum peltatumby Applying Deep-UV Resonance Raman Microscopy. Analytical Chemistry, 2007, 79, 986-993.	3.2	46
227	Towards multimodal nonlinear optical tomography - experimental methodology. Laser Physics Letters, 2011, 8, 617-624.	0.6	46
228	Fiber-enhanced Raman multi-gas spectroscopy: what is the potential of its application to breath analysis?. Bioanalysis, 2015, 7, 281-284.	0.6	46
229	Beyond endoscopic assessment in inflammatory bowel disease: real-time histology of disease activity by non-linear multimodal imaging. Scientific Reports, 2016, 6, 29239.	1.6	46
230	Analysis of Fiber-Enhanced Raman Gas Sensing Based on Raman Chemical Imaging. Analytical Chemistry, 2017, 89, 12269-12275.	3.2	46
231	Raman spectroscopic identification of <i>MycobacteriumÂtuberculosis</i> . Journal of Biophotonics, 2017, 10, 727-734.	1.1	46
232	Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study. Analytical Chemistry, 2020, 92, 15745-15756.	3.2	46
233	Raman Spectroscopy and Imaging in Bioanalytics. Analytical Chemistry, 2022, 94, 86-119.	3.2	46
234	Investigations of Radical Polymerization and Copolymerization Reactions in Optically Levitated Microdroplets by Simultaneous Raman Spectroscopy, Mie Scattering, and Radiation Pressure Measurements. Applied Spectroscopy, 1998, 52, 692-701.	1.2	45

#	Article	IF	CITATIONS
235	In vitro polarization-resolved resonance Raman studies of the interaction of hematin with the antimalarial drug chloroquine. Journal of Raman Spectroscopy, 2004, 35, 819-821.	1.2	45
236	In vivo localization and identification of the antiplasmodial alkaloid dioncophylline A in the tropical lianaTriphyophyllum peltatum by a combination of fluorescence, near infrared Fourier transform Raman microscopy, and density functional theory calculations. Biopolymers, 2006, 82, 295-300.	1.2	45
237	Synthesis and characterization of regioselective substituted tetrapyridophenazine ligands and their Ru(ii) complexes. Dalton Transactions, 2010, 39, 2359.	1.6	45
238	Assessment of two isolation techniques for bacteria in milk towards their compatibility with Raman spectroscopy. Analyst, The, 2011, 136, 4997.	1.7	45
239	Multigas Leakage Correction in Static Environmental Chambers Using Sulfur Hexafluoride and Raman Spectroscopy. Analytical Chemistry, 2015, 87, 11137-11142.	3.2	45
240	Light sheet Raman micro-spectroscopy. Optica, 2016, 3, 452.	4.8	45
241	Selfâ€Healing Polymer Networks Based on Reversible Michael Addition Reactions. Macromolecular Chemistry and Physics, 2016, 217, 2541-2550.	1.1	45
242	Mesoscopically Bi-continuous Ag–Au Hybrid Nanosponges with Tunable Plasmon Resonances as Bottom-Up Substrates for Surface-Enhanced Raman Spectroscopy. Chemistry of Materials, 2016, 28, 7673-7682.	3.2	45
243	Detection of PCR products amplified from DNA of epizootic pathogens using magnetic nanoparticles and SERS. Journal of Raman Spectroscopy, 2011, 42, 243-250.	1.2	44
244	A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics. Analyst, The, 2013, 138, 4048.	1.7	44
245	Multimodal nonlinear microscopic investigations on head and neck squamous cell carcinoma: Toward intraoperative imaging. Head and Neck, 2013, 35, E280-7.	0.9	44
246	Raman Imaging with a Fiber-Coupled Multichannel Spectrograph. Sensors, 2014, 14, 21968-21980.	2.1	44
247	Fast differentiation of SIRS and sepsis from blood plasma of ICU patients using Raman spectroscopy. Journal of Biophotonics, 2014, 7, 232-240.	1.1	44
248	Distinction of Ecuadorian varieties of fermented cocoa beans using Raman spectroscopy. Food Chemistry, 2016, 211, 274-280.	4.2	44
249	Ultrasensitive Detection of Antiseptic Antibiotics in Aqueous Media and Human Urine Using Deep UV Resonance Raman Spectroscopy. Analytical Chemistry, 2017, 89, 9997-10003.	3.2	44
250	Rapid detection of the bacterial biomarker pyocyanin in artificial sputum using a SERS-active silicon nanowire matrix covered by bimetallic noble metal nanoparticles. Talanta, 2019, 202, 171-177.	2.9	44
251	Raman Spectroscopy—A Powerful Tool for in situ Planetary Science. Space Science Reviews, 2008, 135, 281-292.	3.7	43
252	Spatially resolved determination of the structure and composition of diatom cell walls by Raman and FTIR imaging. Analytical and Bioanalytical Chemistry, 2010, 398, 509-517.	1.9	43

#	Article	IF	CITATIONS
253	Quantitative detection of C-deuterated drugs by CARS microscopy and Raman microspectroscopy. Analyst, The, 2011, 136, 3686.	1.7	43
254	Fiber-based optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering (CARS) microscopy. Optics Express, 2014, 22, 21921.	1.7	43
255	Raman spectroscopic differentiation of planktonic bacteria and biofilms. Analytical and Bioanalytical Chemistry, 2015, 407, 6803-6813.	1.9	43
256	Liquid-liquid extraction-assisted SERS-based determination of sulfamethoxazole in spiked human urine. Analytica Chimica Acta, 2020, 1109, 61-68.	2.6	43
257	The Influence of Fluoroquinolone Drugs on the Bacterial Growth of S. epidermidis Utilizing the Unique Potential of Vibrational Spectroscopy. Journal of Physical Chemistry A, 2007, 111, 2898-2906.	1.1	42
258	Relationship between molecular structure and Raman spectra of quinolines. Journal of Molecular Structure, 2009, 924-926, 301-308.	1.8	42
259	Two-color Raman spectroscopy for the simultaneous detection of chemotherapeutics and antioxidative status of human skin. Laser Physics Letters, 2011, 8, 895-900.	0.6	42
260	IR Spectroscopic Methods for the Investigation of the CO Release from CORMs. Journal of Physical Chemistry A, 2014, 118, 5381-5390.	1.1	42
261	Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1. Frontiers in Microbiology, 2015, 6, 734.	1.5	42
262	Droplet based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection. Physical Chemistry Chemical Physics, 2015, 17, 21236-21242.	1.3	42
263	A droplet-based microfluidic chip as a platform for leukemia cell lysate identification using surface-enhanced Raman scattering. Analytical and Bioanalytical Chemistry, 2018, 410, 999-1006.	1.9	42
264	Beer's law derived from electromagnetic theory. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 215, 345-347.	2.0	42
265	Device for Raman Difference Spectroscopy. Analytical Chemistry, 2007, 79, 6159-6166.	3.2	41
266	Raman spectroscopic investigation of the antimalarial agent mefloquine. Analytical and Bioanalytical Chemistry, 2007, 387, 1749-1757.	1.9	41
267	The influence of intracellular storage material on bacterial identification by means of Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2010, 397, 2929-2937.	1.9	41
268	Identification and classification of organic and inorganic components of particulate matter via Raman spectroscopy and chemometric approaches. Journal of Raman Spectroscopy, 2011, 42, 383-392.	1.2	41
269	Interpreting CARS images of tissue within the C–Hâ€stretching region. Journal of Biophotonics, 2012, 5, 729-733.	1.1	41
270	Hyperspectral unmixing of Raman micro-images for assessment of morphological and chemical parameters in non-dried brain tumor specimens. Analytical and Bioanalytical Chemistry, 2013, 405, 8719-8728.	1.9	41

#	Article	lF	CITATIONS
271	Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity. Analytical Chemistry, 2017, 89, 1117-1122.	3.2	41
272	Onsite cavity enhanced Raman spectrometry for the investigation of gas exchange processes in the Earth's critical zone. Analyst, The, 2017, 142, 3360-3369.	1.7	41
273	The electric field standing wave effect in infrared transflection spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 191, 283-289.	2.0	41
274	Modified PCA and PLS: Towards a better classification in Raman spectroscopy–based biological applications. Journal of Chemometrics, 2020, 34, e3202.	0.7	41
275	Combining multiset resolution and segmentation for hyperspectral image analysis of biological tissues. Analytica Chimica Acta, 2015, 881, 24-36.	2.6	40
276	Multimodal nonlinear microscopy of head and neck carcinoma — toward surgery assisting frozen section analysis. Head and Neck, 2016, 38, 1545-1552.	0.9	40
277	Rapid acquisition of mean Raman spectra of eukaryotic cells for a robust single cell classification. Analyst, The, 2016, 141, 6387-6395.	1.7	40
278	Derivatives of dipyrido[3,2-a:2′,3′-c]phenazine and its ruthenium complexes, influence of arylic substitution on photophysical properties. Dalton Transactions, 2006, , 2225-2231.	1.6	39
279	Nondestructive analysis of single rapeseeds by means of Raman spectroscopy. Journal of Raman Spectroscopy, 2007, 38, 301-308.	1.2	39
280	Zinc(II) Bisterpyridine Complexes: The Influence of the Cation on the π-Conjugation between Terpyridine and the Lateral Phenyl Substituent. Journal of Physical Chemistry C, 2008, 112, 18651-18660.	1.5	39
281	The switch that wouldn't switch – unexpected luminescence from a ruthenium(ii)-dppz-complex in water. Dalton Transactions, 2010, 39, 2768.	1.6	39
282	Disruption-free imaging by Raman spectroscopy reveals a chemical sphere with antifouling metabolites around macroalgae. Biofouling, 2012, 28, 687-696.	0.8	39
283	A study of Docetaxel-induced effects in MCF-7 cells by means of Raman microspectroscopy. Analytical and Bioanalytical Chemistry, 2012, 403, 745-753.	1.9	39
284	Characterization of carotenoids in soil bacteria and investigation of their photodegradation by UVA radiation <i>via</i> resonance Raman spectroscopy. Analyst, The, 2015, 140, 4584-4593.	1.7	39
285	Raman spectroscopic investigation of 13CO2 labeling and leaf dark respiration of Fagus sylvatica L. (European beech). Analytical and Bioanalytical Chemistry, 2015, 407, 1813-1817.	1.9	39
286	Texture analysis and classification in coherent anti-Stokes Raman scattering (CARS) microscopy images for automated detection of skin cancer. Computerized Medical Imaging and Graphics, 2015, 43, 36-43.	3.5	39
287	Destruction-free procedure for the isolation of bacteria from sputum samples for Raman spectroscopic analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 8333-8341.	1.9	39
288	Label-free detection of Phytophthora ramorum using surface-enhanced Raman spectroscopy. Analyst, The, 2015, 140, 7254-7262.	1.7	39

#	Article	IF	CITATIONS
289	Evaluation of Shifted Excitation Raman Difference Spectroscopy and Comparison to Computational Background Correction Methods Applied to Biochemical Raman Spectra. Sensors, 2017, 17, 1724.	2.1	39
290	Adsorption of 6-mercaptopurine and 6-mercaptopurine riboside on silver colloid: a pH dependent surface enhanced Raman spectroscopy and density functional theory study. Part I. 6-Mercaptopurine. Journal of Molecular Structure, 2005, 735-736, 103-113.	1.8	38
291	Excited-State Planarization as Free Barrierless Motion in a π-Conjugated Terpyridine. Journal of Physical Chemistry C, 2010, 114, 6841-6848.	1.5	38
292	Immuno-Surface-Enhanced Coherent Anti-Stokes Raman Scattering Microscopy: Immunohistochemistry with Target-Specific Metallic Nanoprobes and Nonlinear Raman Microscopy. Analytical Chemistry, 2011, 83, 7081-7085.	3.2	38
293	Trapped in Imidazole: How to Accumulate Multiple Photoelectrons on a Blackâ€Absorbing Ruthenium Complex. Chemistry - A European Journal, 2014, 20, 3793-3799.	1.7	38
294	A new calibration concept for a reproducible quantitative detection based on SERS measurements in a microfluidic device demonstrated on the model analyte adenine. Physical Chemistry Chemical Physics, 2014, 16, 9056.	1.3	38
295	Two-dimensional Raman correlation spectroscopy reveals molecular structural changes during temperature-induced self-healing in polymers based on the Diels–Alder reaction. Physical Chemistry Chemical Physics, 2015, 17, 22587-22595.	1.3	38
296	Identification of vancomycin interaction with Enterococcus faecalis within 30Âmin of interaction time using Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2015, 407, 8343-8352.	1.9	38
297	Demonstration of Carbon Catabolite Repression in Naphthalene Degrading Soil Bacteria via Raman Spectroscopy Based Stable Isotope Probing. Analytical Chemistry, 2016, 88, 7574-7582.	3.2	38
298	Raman and Infrared Spectroscopy Distinguishing Replicative Senescent from Proliferating Primary Human Fibroblast Cells by Detecting Spectral Differences Mainly Due to Biomolecular Alterations. Analytical Chemistry, 2017, 89, 2937-2947.	3.2	38
299	Realâ€time Raman and SRS imaging of living human macrophages reveals cellâ€toâ€cell heterogeneity and dynamics of lipid uptake. Journal of Biophotonics, 2017, 10, 1217-1226.	1.1	38
300	Fiber-Enhanced Raman Sensing of Cefuroxime in Human Urine. Analytical Chemistry, 2018, 90, 13243-13248.	3.2	38
301	Multimodal nonlinear endomicroscopic imaging probe using a double-core double-clad fiber and focus-combining micro-optical concept. Light: Science and Applications, 2021, 10, 207.	7.7	38
302	Quality control ofHarpagophytum procumbensand its related phytopharmaceutical products by means of NIR-FT-Raman spectroscopy. Biopolymers, 2005, 77, 1-8.	1.2	37
303	Quantitative CARS Microscopic Detection of Analytes and Their Isotopomers in a Twoâ€Channel Microfluidic Chip. Small, 2009, 5, 2816-2818.	5.2	37
304	A Concept to Tailor Electron Delocalization: Applying QTAIM Analysis to Phenylâ^'Terpyridine Compounds. Journal of Physical Chemistry A, 2010, 114, 13163-13174.	1.1	37
305	Seamless stitching of tile scan microscope images. Journal of Microscopy, 2015, 258, 223-232.	0.8	37
306	A manual and an automatic TERS based virus discrimination. Nanoscale, 2015, 7, 4545-4552.	2.8	37

#	Article	IF	CITATIONS
307	Minimal Invasive Gender Determination of Birds by Means of UV-Resonance Raman Spectroscopy. Analytical Chemistry, 2008, 80, 1080-1086.	3.2	36
308	Characterization of collagen and cholesterol deposition in atherosclerotic arterial tissue using nonâ€linear microscopy. Journal of Biophotonics, 2014, 7, 135-143.	1.1	36
309	Mesoporous silica particle embedded functional graphene oxide as an efficient platform for urea biosensing. Analytical Methods, 2014, 6, 6711-6720.	1.3	36
310	Fiber enhanced Raman sensing of levofloxacin by PCF bandgap-shifting into the visible range. Analytical Methods, 2018, 10, 586-592.	1.3	36
311	Resonance Raman studies of photochemical molecular devices for multielectron storage. Journal of Raman Spectroscopy, 2008, 39, 557-559.	1.2	35
312	Ruthenium polypyridine complexes of tris-(2-pyridyl)-1,3,5-triazine—unusual building blocks for the synthesis of photochemical molecular devices. Dalton Transactions, 2009, , 4012.	1.6	35
313	Novel workflow for combining Raman spectroscopy and MALDI-MSI for tissue based studies. Analytical and Bioanalytical Chemistry, 2015, 407, 7865-7873.	1.9	35
314	Rapid Identification of <i>Pseudomonas</i> spp. via Raman Spectroscopy Using Pyoverdine as Capture Probe. Analytical Chemistry, 2016, 88, 1570-1577.	3.2	35
315	Sample-Size Planning for Multivariate Data: A Raman-Spectroscopy-Based Example. Analytical Chemistry, 2018, 90, 12485-12492.	3.2	35
316	Detection and Differentiation of Bacterial and Fungal Infection of Neutrophils from Peripheral Blood Using Raman Spectroscopy. Analytical Chemistry, 2020, 92, 10560-10568.	3.2	35
317	Chemotaxonomy of mints of genusMenthaby applying Raman spectroscopy. Biopolymers, 2002, 67, 358-361.	1.2	34
318	Pelagic boundary conditions affect the biological formation of ironâ€rich particles (iron snow) and their microbial communities. Limnology and Oceanography, 2011, 56, 1386-1398.	1.6	34
319	Photophysical Dynamics of a Ruthenium Polypyridine Dye Controlled by Solvent pH. Journal of Physical Chemistry C, 2012, 116, 1274-1281.	1.5	34
320	Evaluation of Colloids and Activation Agents for Determination of Melamine Using UV-SERS. Journal of Physical Chemistry C, 2012, 116, 6083-6091.	1.5	34
321	Amnesic shellfish poisoning biotoxin detection in seawater using pure or amino-functionalized Ag nanoparticles and SERS. Talanta, 2014, 130, 108-115.	2.9	34
322	How Does Peripheral Functionalization of Ruthenium(II)–Terpyridine Complexes Affect Spatial Charge Redistribution after Photoexcitation at the Franck–Condon Point?. ChemPhysChem, 2015, 16, 1395-1404.	1.0	34
323	Label-Free Imaging and Spectroscopic Analysis of Intracellular Bacterial Infections. Analytical Chemistry, 2015, 87, 2137-2142.	3.2	34
324	Raman spectroscopic monitoring of the growth of pigmented and non-pigmented mycobacteria. Analytical and Bioanalytical Chemistry, 2015, 407, 8919-8923.	1.9	34

#	Article	IF	CITATIONS
325	Remote-controlled delivery of CO via photoactive CO-releasing materials on a fiber optical device. Dalton Transactions, 2016, 45, 13222-13233.	1.6	34
326	Rapid Colorimetric Detection of <i>Pseudomonas aeruginosa</i> in Clinical Isolates Using a Magnetic Nanoparticle Biosensor. ACS Omega, 2019, 4, 21684-21688.	1.6	34
327	Hydrogen and C2–C6 Alkane Sensing in Complex Fuel Gas Mixtures with Fiber-Enhanced Raman Spectroscopy. Analytical Chemistry, 2021, 93, 10546-10552.	3.2	34
328	FT-Raman investigation of alkaloids in the lianaAncistrocladus heyneanus. , 1998, 4, 113-120.		33
329	Diagnosis and screening of cancer tissues by fiber-optic probe Raman spectroscopy. Biomedical Spectroscopy and Imaging, 2012, 1, 39-55.	1.2	33
330	Challenges in Molecular Structure Determination. , 2012, , .		33
331	Identification of minerals and organic materials in Middle Eocene ironstones from the Bahariya Depression in the Western Desert of Egypt by means of microâ€Raman spectroscopy. Journal of Raman Spectroscopy, 2012, 43, 405-410.	1.2	33
332	Fully convolutional networks in multimodal nonlinear microscopy images for automated detection of head and neck carcinoma: Pilot study. Head and Neck, 2019, 41, 116-121.	0.9	33
333	Fusion of MALDI Spectrometric Imaging and Raman Spectroscopic Data for the Analysis of Biological Samples. Frontiers in Chemistry, 2018, 6, 257.	1.8	33
334	Fourier transform Raman and surface-enhanced Raman spectroscopy of some quinoline derivatives. Journal of Raman Spectroscopy, 2002, 33, 207-212.	1.2	32
335	Resonance Raman Studies of Bis(terpyridine)ruthenium(II) Amino Acid Esters and Diesters. European Journal of Inorganic Chemistry, 2009, 2009, 3119-3126.	1.0	32
336	Synthesis and Photophysical Properties of 3,8â€Disubstituted 1,10â€Phenanthrolines and Their Ruthenium(II) Complexes. European Journal of Inorganic Chemistry, 2009, 2009, 4962-4971.	1.0	32
337	Effect of supplementary manganese on the sporulation of <i>Bacillus</i> endospores analysed by Raman spectroscopy, 2009, 40, 1469-1477.	1.2	32
338	A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA. Biosensors and Bioelectronics, 2009, 25, 15-21.	5.3	32
339	Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles. Lab on A Chip, 2013, 13, 1109.	3.1	32
340	Isolation and Enrichment of Pathogens with a Surfaceâ€Modified Aluminium Chip for Raman Spectroscopic Applications. ChemPhysChem, 2013, 14, 3600-3605.	1.0	32
341	Silver nanostructures formation in porous Si/SiO2 matrix. Journal of Crystal Growth, 2014, 400, 21-26.	0.7	32
342	Dye-sensitized PS- <i>b</i> -P2VP-templated nickel oxide films for photoelectrochemical applications. Interface Focus, 2015, 5, 20140083.	1.5	32

#	Article	IF	CITATIONS
343	Ultra Sensing by Combining Extraordinary Optical Transmission with Perfect Absorption. ACS Photonics, 2015, 2, 1567-1575.	3.2	32
344	Rapid, culture-independent, optical diagnostics of centrifugally captured bacteria from urine samples. Biomicrofluidics, 2015, 9, 044118.	1.2	32
345	Linear and Non-Linear Optical Imaging of Cancer Cells with Silicon Nanoparticles. International Journal of Molecular Sciences, 2016, 17, 1536.	1.8	32
346	Toward food analytics: fast estimation of lycopene and \hat{l}^2 -carotene content in tomatoes based on surface enhanced Raman spectroscopy (SERS). Analyst, The, 2016, 141, 4447-4455.	1.7	32
347	Onâ€ɛhip spectroscopic assessment of microbial susceptibility to antibiotics within 3.5â€hours. Journal of Biophotonics, 2017, 10, 1547-1557.	1.1	32
348	Extended Multiplicative Signal Correction Based Model Transfer for Raman Spectroscopy in Biological Applications. Analytical Chemistry, 2018, 90, 9787-9795.	3.2	32
349	Imaging the invisible—Bioorthogonal Raman probes for imaging of cells and tissues. Journal of Biophotonics, 2020, 13, e202000129.	1.1	32
350	Real-time molecular imaging of near-surface tissue using Raman spectroscopy. Light: Science and Applications, 2022, 11, 90.	7.7	32
351	Excited-state processes in protochlorophyllide a – a femtosecond time-resolved absorption study. Chemical Physics Letters, 2004, 397, 110-115.	1.2	31
352	FT-Raman and NIR-SERS characterization of the antimalarial drugs chloroquine and mefloquine and their interaction with hematin. Journal of Raman Spectroscopy, 2006, 37, 326-334.	1.2	31
353	Novel Bottom-Up SERS Substrates for Quantitative and Parallelized Analytics. ChemPhysChem, 2010, 11, 394-398.	1.0	31
354	Quantitative mineral analysis using Raman spectroscopy and chemometric techniques. Journal of Raman Spectroscopy, 2010, 41, 684-689.	1.2	31
355	Coherent anti-Stokes Raman scattering and two photon excited fluorescence for neurosurgery. Clinical Neurology and Neurosurgery, 2015, 131, 42-46.	0.6	31
356	Raman spectroscopic detection and identification of Burkholderia mallei and Burkholderia pseudomallei in feedstuff. Analytical and Bioanalytical Chemistry, 2015, 407, 787-794.	1.9	31
357	Towards an improvement of model transferability for Raman spectroscopy in biological applications. Vibrational Spectroscopy, 2017, 91, 111-118.	1.2	31
358	Beyond Beer's Law: Why the Index of Refraction Depends (Almost) Linearly on Concentration. ChemPhysChem, 2020, 21, 707-711.	1.0	31
359	Shapeâ€Memory Metallopolymers Based on Two Orthogonal Metal–Ligand Interactions. Advanced Materials, 2021, 33, e2006655.	11.1	31
360	Deep learning as phase retrieval tool for CARS spectra. Optics Express, 2020, 28, 21002.	1.7	31

#	Article	IF	CITATIONS
361	Raman and surface enhanced Raman spectroscopic investigation on Lamiaceae plants. Journal of Molecular Structure, 1999, 480-481, 121-124.	1.8	30
362	Raman spectroscopy breaking terrestrial barriers!. Journal of Raman Spectroscopy, 2004, 35, 429-432.	1.2	30
363	UV-resonance Raman spectroscopic study of human plasma of healthy donors and patients with thrombotic microangiopathy. Biopolymers, 2006, 82, 317-324.	1.2	30
364	Blueâ€Emitting Polymers Based on 4â€Hydroxythiazoles Incorporated in a Methacrylate Backbone. Macromolecular Chemistry and Physics, 2011, 212, 840-848.	1.1	30
365	A Novel Ru(II) Polypyridine Black Dye Investigated by Resonance Raman Spectroscopy and TDDFT Calculations. Journal of Physical Chemistry C, 2012, 116, 19968-19977.	1.5	30
366	Ciprofloxacin: pH-dependent SERS signal and its detection in spiked river water using LoC-SERS. Analytical and Bioanalytical Chemistry, 2016, 408, 8393-8401.	1.9	30
367	In situ hydrazine reduced silver colloid synthesis – Enhancing SERS reproducibility. Analytica Chimica Acta, 2016, 946, 73-79.	2.6	30
368	Heme interacts with histidine- and tyrosine-based protein motifs and inhibits enzymatic activity of chloramphenicol acetyltransferase from Escherichia coli. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1343-1353.	1.1	30
369	Microwave-Assisted Silver Nanoparticle Film Formation for SERS Applications. Journal of Physical Chemistry C, 2016, 120, 1237-1244.	1.5	30
370	The Electric Field Standing Wave Effect in Infrared Transmission Spectroscopy. ChemPhysChem, 2017, 18, 2916-2923.	1.0	30
371	Slit-Enhanced Chiral- and Broadband Infrared Ultra-Sensing. ACS Photonics, 2018, 5, 3238-3245.	3.2	30
372	Removing interference-based effects from the infrared transflectance spectra of thin films on metallic substrates: a fast and wave optics conform solution. Analyst, The, 2018, 143, 3164-3175.	1.7	30
373	Raman Spectroscopic Study of Crystallization from Solutions Containing MgSO4and Na2SO4: Raman Spectra of Double Salts. Journal of Physical Chemistry A, 2011, 115, 5540-5546.	1.1	29
374	From Bulk to Single-Cell Classification of the Filamentous Growing <i>Streptomyces</i> Bacteria by Means of Raman Spectroscopy. Applied Spectroscopy, 2011, 65, 1116-1125.	1.2	29
375	Spectroscopic detection and quantification of heme and heme degradation products. Analytical and Bioanalytical Chemistry, 2012, 404, 2819-2829.	1.9	29
376	Lightâ€Induced Dynamics in Conjugated Bis(terpyridine) Ligands – A Case Study Toward Photoactive Coordination Polymers. Macromolecular Rapid Communications, 2012, 33, 481-497.	2.0	29
377	Accumulating advantages, reducing limitations: Multimodal nonlinear imaging in biomedical sciences – The synergy of multiple contrast mechanisms. Journal of Biophotonics, 2013, 6, 887-904.	1.1	29
378	Invited Article: A rigid coherent anti-Stokes Raman scattering endoscope with high resolution and a large field of view. APL Photonics, 2018, 3, .	3.0	29

#	Article	IF	CITATIONS
379	Raman investigations on laser-trapped gas bubbles. Chemical Physics Letters, 1997, 277, 331-334.	1.2	28
380	Modelling IR spectra of polycrystalline materials in the large crystallites limit—quantitative determination of orientation. Journal of Optics, 2006, 8, 657-671.	1.5	28
381	Influence of Multiple Protonation on the Initial Excitation in a Black Dye. Journal of Physical Chemistry C, 2011, 115, 24004-24012.	1.5	28
382	Identification of water-conditioned Pseudomonas aeruginosa by Raman microspectroscopy on a single cell level. Systematic and Applied Microbiology, 2014, 37, 360-367.	1.2	28
383	Characterization of different substrates for Raman spectroscopic imaging of eukaryotic cells. Journal of Raman Spectroscopy, 2016, 47, 773-786.	1.2	28
384	Biomacromolecular-Assembled Nanoclusters: Key Aspects for Robust Colloidal SERS Sensing. ACS Applied Materials & Interfaces, 2020, 12, 57302-57313.	4.0	28
385	Biophotonic technologies for assessment of breast tumor surgical margins—A review. Journal of Biophotonics, 2021, 14, e202000280.	1.1	28
386	In situ Raman investigation of single lipid droplets in the water-conducting xylem of four woody plant species. Biopolymers, 2004, 74, 151-156.	1.2	27
387	Quality Control of Commercially Available Essential Oils by Means of Raman Spectroscopy. Journal of Agricultural and Food Chemistry, 2006, 54, 7020-7026.	2.4	27
388	The Excited-State Chemistry of Protochlorophyllide a: A Time-Resolved Fluorescence Study. ChemPhysChem, 2006, 7, 1727-1733.	1.0	27
389	Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates. Analytical and Bioanalytical Chemistry, 2009, 394, 1811-1818.	1.9	27
390	Surface-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2009, 394, 1717-1718.	1.9	27
391	UV cross-linking of unmodified DNA on glass surfaces. Analytical and Bioanalytical Chemistry, 2009, 395, 1097-1105.	1.9	27
392	Tunable narrow band filter for CARS microscopy. Laser Physics Letters, 2010, 7, 510-516.	0.6	27
393	Direct Observation of Temperature-Dependent Excited-State Equilibrium in Dinuclear Ruthenium Terpyridine Complexes Bearing Electron-Poor Bridging Ligands. Journal of Physical Chemistry C, 2011, 115, 12677-12688.	1.5	27
394	Towards automated segmentation of cells and cell nuclei in nonlinear optical microscopy. Journal of Biophotonics, 2012, 5, 878-888.	1.1	27
395	Synthesis and photophysics of a novel photocatalyst for hydrogen production based on a tetrapyridoacridine bridging ligand. Chemical Physics, 2012, 393, 65-73.	0.9	27
396	Raman Spectroscopy as a Rapid Tool for Quantitative Analysis of Butter Adulterated with Margarine. Food Analytical Methods, 2016, 9, 1315-1320.	1.3	27

#	Article	IF	CITATIONS
397	Surface-enhanced Raman spectroscopy of cell lysates mixed with silver nanoparticles for tumor classification. Beilstein Journal of Nanotechnology, 2017, 8, 1183-1190.	1.5	27
398	Model transfer for Ramanâ€spectroscopyâ€based bacterial classification. Journal of Raman Spectroscopy, 2018, 49, 627-637.	1.2	27
399	Towards an Interpretable Classifier for Characterization of Endoscopic Mayo Scores in Ulcerative Colitis Using Raman Spectroscopy. Analytical Chemistry, 2020, 92, 13776-13784.	3.2	27
400	Trends in pharmaceutical analysis and quality control by modern Raman spectroscopic techniques. TrAC - Trends in Analytical Chemistry, 2022, 153, 116623.	5.8	27
401	Raman spectroscopy investigation of biological materials by use of etched and silver coated glass fiber tips. Biopolymers, 2002, 67, 327-330.	1.2	26
402	Nanoscale distinction of membrane patches – a TERS study of <i>Halobacterium salinarum</i> . Journal of Biophotonics, 2012, 5, 582-591.	1.1	26
403	Determination of the dielectric tensor function of triclinic CuSO4·5H2O. Vibrational Spectroscopy, 2013, 67, 44-54.	1.2	26
404	Classification and identification of pigmented cocci bacteria relevant to the soil environment via Raman spectroscopy. Environmental Science and Pollution Research, 2015, 22, 19317-19325.	2.7	26
405	Self-healing Functional Polymers: Optical Property Recovery of Conjugated Polymer Films by Uncatalyzed Imine Metathesis. Macromolecules, 2017, 50, 3789-3795.	2.2	26
406	Hierarchically-Designed 3D Flower-Like Composite Nanostructures as an Ultrastable, Reproducible, and Sensitive SERS Substrate. ACS Applied Materials & Interfaces, 2017, 9, 38854-38862.	4.0	26
407	Observation of Giant Infrared Circular Dichroism in Plasmonic 2D-Metamaterial Arrays. ACS Photonics, 2018, 5, 1176-1180.	3.2	26
408	Automatic labelâ€free detection of breast cancer using nonlinear multimodal imaging and the convolutional neural network ResNet50. Translational Biophotonics, 2019, 1, e201900003.	1.4	26
409	Beyond Beer's Law: Revisiting the Lorentz‣orenz Equation. ChemPhysChem, 2020, 21, 1218-1223.	1.0	26
410	Micro-Raman spectroscopy: a valuable tool for the investigation of extraterrestrial material. Journal of Raman Spectroscopy, 2004, 35, 515-518.	1.2	25
411	The excited-state dynamics of magnesium octaethylporphyrin studied by femtosecond time-resolved four-wave-mixing. Chemical Physics Letters, 2005, 415, 94-99.	1.2	25
412	Femtosecond time-resolved spectroscopy on biological photoreceptor chromophores. Laser and Photonics Reviews, 2007, 1, 57-78.	4.4	25
413	Investigation of substitution effects on novel Ru–dppz complexes by Raman spectroscopy in combination with DFT methods. Journal of Raman Spectroscopy, 2010, 41, 922-932.	1.2	25
414	Fluorescence quenching in Zn2+-bis-terpyridine coordination polymers: a single molecule study. Journal of Materials Chemistry, 2012, 22, 16041.	6.7	25

#	Article	IF	CITATIONS
415	Revealing the microbial community structure of clogging materials in dewatering wells differing in physico-chemical parameters in an open-cast mining area. Water Research, 2014, 63, 222-233.	5.3	25
416	Quantitative SERS studies by combining LOC-SERS with the standard addition method. Analytical and Bioanalytical Chemistry, 2015, 407, 8925-8929.	1.9	25
417	Monitoring metabolites from Schizophyllum commune interacting with Hypholoma fasciculare combining LESA–HR mass spectrometry and Raman microscopy. Analytical and Bioanalytical Chemistry, 2015, 407, 2273-2282.	1.9	25
418	Assessment of growth phases of the diatom Ditylum brightwellii by FT-IR and Raman spectroscopy. Algal Research, 2016, 19, 246-252.	2.4	25
419	Confocal Raman microscopy combined with optical clearing for identification of inks in multicolored tattooed skin <i>in vivo</i> . Analyst, The, 2018, 143, 4990-4999.	1.7	25
420	Deviations from Beer's law on the microscale – nonadditivity of absorption cross sections. Physical Chemistry Chemical Physics, 2019, 21, 9793-9801.	1.3	25
421	Quantitative Evaluation of Infrared Absorbance Spectra – Lorentz Profile versus Lorentz Oscillator. ChemPhysChem, 2019, 20, 31-36.	1.0	25
422	Laser spectroscopic technique for direct identification of a single virus I: FASTER CARS. Proceedings of the United States of America, 2020, 117, 27820-27824.	3.3	25
423	Detection of multi-resistant clinical strains of E. coli with Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2022, 414, 1481-1492.	1.9	25
424	High-Precision Determination of Size, Refractive Index, and Dispersion of Single Microparticles from Morphology-Dependent Resonances in Optical Processes. Applied Spectroscopy, 1998, 52, 284-291.	1.2	24
425	Remote Raman spectroscopy as a prospective tool for planetary surfaces. Journal of Raman Spectroscopy, 2004, 35, 433-440.	1.2	24
426	Investigation on the Second Part of the Electromagnetic SERS Enhancement and Resulting Fabrication Strategies of Anisotropic Plasmonic Arrays. ChemPhysChem, 2010, 11, 1918-1924.	1.0	24
427	Fabrication and characterization of silver deposited micro fabricated quartz arrays for surface enhanced Raman spectroscopy (SERS). Microelectronic Engineering, 2011, 88, 1761-1763.	1.1	24
428	Fluorescence dye as novel label molecule for quantitative SERS investigations of an antibiotic. Analytical and Bioanalytical Chemistry, 2012, 402, 2625-2631.	1.9	24
429	Raman investigations of Upper Cretaceous phosphorite and black shale from Safaga District, Red Sea, Egypt. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 118, 42-47.	2.0	24
430	Ultrafast Intramolecular Relaxation and Waveâ€Packet Motion in a Rutheniumâ€Based Supramolecular Photocatalyst. Chemistry - A European Journal, 2015, 21, 7668-7674.	1.7	24
431	Raman imaging of macrophages incubated with triglyceride-enriched oxLDL visualizes translocation of lipids between endocytic vesicles and lipid droplets. Journal of Lipid Research, 2017, 58, 876-883.	2.0	24
432	A healing ionomer crosslinked by a bis-bidentate halogen bond linker: a route to hard and healable coatings. Polymer Chemistry, 2018, 9, 2193-2197.	1.9	24

#	Article	IF	CITATIONS
433	Deep learning for â€~artefact' removal in infrared spectroscopy. Analyst, The, 2020, 145, 5213-5220.	1.7	24
434	Aptamers: Potential Diagnostic and Therapeutic Agents for Blood Diseases. Molecules, 2022, 27, 383.	1.7	24
435	Raman-Mie scattering from single laser trapped microdroplets. Journal of Molecular Structure, 1997, 408-409, 113-120.	1.8	23
436	Tunable light source for narrowband laser excitation: application to Raman spectroscopy. Laser Physics Letters, 2009, 6, 639-643.	0.6	23
437	Toward in Vivo Chemical Imaging of Epicuticular Waxes Â. Plant Physiology, 2010, 154, 604-610.	2.3	23
438	Tuning of photocatalytic activity by creating a tridentate coordination sphere for palladium. Dalton Transactions, 2014, 43, 11676.	1.6	23
439	Chip-on-foil devices for DNA analysis based on inkjet-printed silver electrodes. Lab on A Chip, 2014, 14, 392-401.	3.1	23
440	Shedding light on host niches: label-free <i>in situ</i> detection of <i>Mycobacterium gordonae</i> via carotenoids in macrophages by Raman microspectroscopy. Cellular Microbiology, 2015, 17, 832-842.	1.1	23
441	Classification and prediction of HCC tissues by Raman imaging with identification of fatty acids as potential lipid biomarkers. Journal of Cancer Research and Clinical Oncology, 2015, 141, 407-418.	1.2	23
442	Recognition of tumor cells by immuno-SERS-markers in a microfluidic chip at continuous flow. Analyst, The, 2016, 141, 5986-5989.	1.7	23
443	Oxygenâ€Dependent Photocatalytic Water Reduction with a Ruthenium(imidazolium) Chromophore and a Cobaloxime Catalyst. Chemistry - A European Journal, 2016, 22, 8240-8253.	1.7	23
444	Fiber probe for nonlinear imaging applications. Journal of Biophotonics, 2016, 9, 138-143.	1.1	23
445	Isolation matters—processing blood for Raman microspectroscopic identification of bacteria. Analytical and Bioanalytical Chemistry, 2019, 411, 5445-5454.	1.9	23
446	Bladder tissue characterization using probeâ€based Raman spectroscopy: Evaluation of tissue heterogeneity and influence on the model prediction. Journal of Biophotonics, 2020, 13, e201960025.	1.1	23
447	Gold nanoflowers grown in a porous Si/SiO2 matrix: The fabrication process and plasmonic properties. Applied Surface Science, 2020, 507, 144989.	3.1	23
448	Spatiotemporal Organization of Biofilm Matrix Revealed by Confocal Raman Mapping Integrated with Non-negative Matrix Factorization Analysis. Analytical Chemistry, 2020, 92, 707-715.	3.2	23
449	Removing interference-based effects from infrared spectra – interference fringes re-revisited. Analyst, The, 2020, 145, 3385-3394.	1.7	23
450	Computational tissue staining of non-linear multimodal imaging using supervised and unsupervised deep learning. Biomedical Optics Express, 2021, 12, 2280.	1.5	23

#	Article	IF	CITATIONS
451	Online-Calibration for Reliable and Robust Lab-on-a-Chip Surface Enhanced Raman Spectroscopy Measurement in a Liquid/Liquid Segmented Flow. Analytical Chemistry, 2011, 83, 8337-8340.	3.2	22
452	Modern Raman spectroscopy for biomedical applications. Optik & Photonik, 2011, 6, 24-28.	0.3	22
453	Raman spectroscopic detection of Nickel impact on single <i>Streptomyces</i> cells – possible bioindicators for heavy metal contamination. Journal of Raman Spectroscopy, 2012, 43, 1058-1064.	1.2	22
454	Catalytic Efficiency of a Photoenzyme—An Adaptation to Natural Light Conditions. ChemPhysChem, 2012, 13, 2013-2015.	1.0	22
455	Classification of Raman spectra of single cells with autofluorescence suppression by wavelength modulated excitation. Analytical Methods, 2013, 5, 4608.	1.3	22
456	Synthesis and characterization of an immobilizable photochemical molecular device for H2-generation. Dalton Transactions, 2015, 44, 5577-5586.	1.6	22
457	Design and first applications of a flexible Raman micro-spectroscopic system for biological imaging. Biomedical Spectroscopy and Imaging, 2016, 5, 115-127.	1.2	22
458	UV-Raman Spectroscopic Identification of Fungal Spores Important for Respiratory Diseases. Analytical Chemistry, 2018, 90, 8912-8918.	3.2	22
459	Liquid-Core Microstructured Polymer Optical Fiber as Fiber-Enhanced Raman Spectroscopy Probe for Glucose Sensing. Journal of Lightwave Technology, 2019, 37, 2981-2988.	2.7	22
460	A Machine Learning-Based Raman Spectroscopic Assay for the Identification of Burkholderia mallei and Related Species. Molecules, 2019, 24, 4516.	1.7	22
461	Fiber-Array-Based Raman Hyperspectral Imaging for Simultaneous, Chemically-Selective Monitoring of Particle Size and Shape of Active Ingredients in Analgesic Tablets. Molecules, 2019, 24, 4381.	1.7	22
462	Phenotypic antibiotic susceptibility testing of pathogenic bacteria using photonic readout methods: recent achievements and impact. Applied Microbiology and Biotechnology, 2019, 103, 549-566.	1.7	22
463	Discrimination between pathogenic and non-pathogenic E. coli strains by means of Raman microspectroscopy. Analytical and Bioanalytical Chemistry, 2020, 412, 8241-8247.	1.9	22
464	Raman Spectroscopy Follows Time-Dependent Changes in T Lymphocytes Isolated from Spleen of Endotoxemic Mice. ImmunoHorizons, 2019, 3, 45-60.	0.8	22
465	Etaloning, fluorescence and ambient light suppression by modulated wavelength Raman spectroscopy. Biomedical Spectroscopy and Imaging, 2012, 1, 383-389.	1.2	21
466	Background-Free Bottom-Up Plasmonic Arrays with Increased Sensitivity, Specificity and Shelf Life for SERS Detection Schemes. Journal of Physical Chemistry C, 2015, 119, 13791-13798.	1.5	21
467	Differentiation of MCF-7 tumor cells from leukocytes and fibroblast cells using epithelial cell adhesion molecule targeted multicore surface-enhanced Raman spectroscopy labels. Journal of Biomedical Optics, 2015, 20, 055002.	1.4	21
468	Increased stability in selfâ€healing polymer networks based on reversible Michael addition reactions. Journal of Applied Polymer Science, 2017, 134, .	1.3	21

#	Article	IF	CITATIONS
469	Conjugated Oligomers as Fluorescence Marker for the Determination of the Self-Healing Efficiency in Mussel-Inspired Polymers. Chemistry of Materials, 2018, 30, 2791-2799.	3.2	21
470	Simulation of Transportation and Storage and Their Influence on Raman Spectra of Bacteria. Analytical Chemistry, 2019, 91, 13688-13694.	3.2	21
471	Counterfeit and Substandard Test of the Antimalarial Tablet Riamet® by Means of Raman Hyperspectral Multicomponent Analysis. Molecules, 2019, 24, 3229.	1.7	21
472	Fiber-Enhanced Raman Gas Spectroscopy for the Study of Microbial Methanogenesis. Analytical Chemistry, 2020, 92, 12564-12571.	3.2	21
473	CaF ₂ : An Ideal Substrate Material for Infrared Spectroscopy?. Analytical Chemistry, 2020, 92, 9024-9031.	3.2	21
474	Bolstering fitness via CO2 fixation and organic carbon uptake: mixotrophs in modern groundwater. ISME Journal, 2022, 16, 1153-1162.	4.4	21
475	Investigations of multiple component systems by means of optical trapping and Raman spectroscopy. Journal of Molecular Structure, 1995, 348, 265-268.	1.8	20
476	The excited-state geometry of 1-hydroxy-2- acetonaphthone: a resonance Raman and quantum chemical study. Journal of Raman Spectroscopy, 2006, 37, 148-160.	1.2	20
477	Dispersion analysis of non-normal reflection spectra from monoclinic crystals. Vibrational Spectroscopy, 2012, 63, 396-403.	1.2	20
478	Insights into the Mechanism of Polymer Coating Self-Healing Using Raman Spectroscopy. Applied Spectroscopy, 2014, 68, 541-548.	1.2	20
479	Cell classification with low-resolution Raman spectroscopy (LRRS). Journal of Biophotonics, 2016, 9, 994-1000.	1.1	20
480	CD19-targeted, Raman tagged gold nanourchins as theranostic agents against acute lymphoblastic leukemia. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110478.	2.5	20
481	Highly Sensitive Detection of the Antibiotic Ciprofloxacin by Means of Fiber Enhanced Raman Spectroscopy. Molecules, 2019, 24, 4512.	1.7	20
482	The effect of surface texture on the mineralogical analysis of chondritic meteorites using Raman spectroscopy. Planetary and Space Science, 2002, 50, 865-870.	0.9	19
483	The Excited-State Dynamics of Phycocyanobilin in Dependence on the Excitation Wavelength. ChemPhysChem, 2004, 5, 1171-1177.	1.0	19
484	Raman spectroscopic study of calcium mixed salts of atmospheric importance. Vibrational Spectroscopy, 2012, 61, 206-213.	1.2	19
485	Resonance Raman Spectral Imaging of Intracellular Uptake of β arotene Loaded Poly(D, <scp>L</scp> â€lactideâ€ <i>co</i> â€glycolide) Nanoparticles. ChemPhysChem, 2013, 14, 155-161.	1.0	19
486	Systematic evaluation of the biological variance within the Raman based colorectal tissue diagnostics. Journal of Biophotonics, 2016, 9, 533-541.	1.1	19

#	Article	IF	CITATIONS
487	Elemental analysis-aided Raman spectroscopic studies on Chinese cloisonné wares and painted enamels from the Imperial Palace. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 153, 165-170.	2.0	19
488	Application of High-Throughput Screening Raman Spectroscopy (HTS-RS) for Label-Free Identification and Molecular Characterization of Pollen. Sensors, 2019, 19, 4428.	2.1	19
489	Raman spectroscopy reveals LPS-induced changes of biomolecular composition in monocytic THP-1 cells in a label-free manner. Integrative Biology (United Kingdom), 2019, 11, 87-98.	0.6	19
490	Beyond Beer's Law: Spectral Mixing Rules. Applied Spectroscopy, 2020, 74, 1287-1294.	1.2	19
491	A polyyne toxin produced by an antagonistic bacterium blinds and lyses a Chlamydomonad alga. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
492	corr2D: Implementation of Two-Dimensional Correlation Analysis in R. Journal of Statistical Software, 2019, 90, .	1.8	19
493	Observation of a phase transition in an electrodynamically levitated NH4NO3 microparticle by Mie and Raman scattering. Journal of Raman Spectroscopy, 2000, 31, 217-219.	1.2	18
494	Characterization of Diffusion Processes of Pharmacologically Relevant Molecules through Polydimethylsiloxane Membranes by Confocal Micro-resonance Raman Spectroscopy. ChemPhysChem, 2003, 4, 296-299.	1.0	18
495	Asbestos Mineral Analysis by UV Raman and Energy-Dispersive X-ray Spectroscopy. ChemPhysChem, 2006, 7, 414-420.	1.0	18
496	Dynamics of charge separation in the excited-state chemistry of protochlorophyllide. Chemical Physics Letters, 2010, 492, 157-163.	1.2	18
497	Separation of CARS image contributions with a Gaussian mixture model. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2010, 27, 1361.	0.8	18
498	Distribution of Amygdalin in Apricot (Prunus armeniaca) Seeds Studied by Raman Microscopic Imaging. Applied Spectroscopy, 2012, 66, 644-649.	1.2	18
499	Ruthenium dye functionalized gold nanoparticles and their spectral responses. RSC Advances, 2012, 2, 4463.	1.7	18
500	Synthesis and Characterization of Poly(methyl methacrylate) Backbone Polymers Containing Sideâ€Chain Pendant Ruthenium(II) Bisâ€Terpyridine Complexes With an Elongated Conjugated System. Macromolecular Chemistry and Physics, 2012, 213, 808-819.	1.1	18
501	Automatic identification of novel bacteria using Raman spectroscopy and Gaussian processes. Analytica Chimica Acta, 2013, 794, 29-37.	2.6	18
502	Comparing Raman and fluorescence lifetime spectroscopy from human atherosclerotic lesions using a bimodal probe. Journal of Biophotonics, 2016, 9, 958-966.	1.1	18
503	Synthesis and solution stability of water-soluble κ ² N,κO-bis(3,5-dimethylpyrazolyl)ethanol manganese(<scp>i</scp>) tricarbonyl bromide (CORM-ONN1). Dalton Transactions, 2017, 46, 1684-1693.	1.6	18
504	Simultaneous isolation and detection of single breast cancer cells using surface-enhanced Raman spectroscopy. Talanta, 2018, 186, 44-52.	2.9	18

#	Article	IF	CITATIONS
505	On site visual detection of Porphyromonas gingivalis related periodontitis by using a magnetic-nanobead based assay for gingipains protease biomarkers. Mikrochimica Acta, 2018, 185, 149.	2.5	18
506	Do You Get What You See? Understanding Molecular Selfâ€Healing. Chemistry - A European Journal, 2018, 24, 2493-2502.	1.7	18
507	In Vitro Selection of Specific DNA Aptamers Against the Anti-Coagulant Dabigatran Etexilate. Scientific Reports, 2018, 8, 13290.	1.6	18
508	Effect of biomimetic mineralization on enamel and dentin: A Raman and EDX analysis. Dental Materials, 2019, 35, 1300-1307.	1.6	18
509	Monitoring Deuterium Uptake in Single Bacterial Cells via Two-Dimensional Raman Correlation Spectroscopy. Analytical Chemistry, 2021, 93, 7714-7723.	3.2	18
510	Correlation of crystal violet biofilm test results of <scp><i>Staphylococcus aureus</i></scp> clinical isolates with Raman spectroscopic readâ€out. Journal of Raman Spectroscopy, 2021, 52, 2660-2670.	1.2	18
511	Investigations of the composition changes of an evaporating, single binary-mixture microdroplet by inelastic and elastic light scattering. Chemical Physics Letters, 1998, 284, 377-381.	1.2	17
512	Protein-Induced Excited-State Dynamics of Protochlorophyllide. Journal of Physical Chemistry A, 2011, 115, 7873-7881.	1.1	17
513	Towards multiple readout application of plasmonic arrays. Beilstein Journal of Nanotechnology, 2011, 2, 501-508.	1.5	17
514	Classification of novel thiazole compounds for sensitizing Ru–polypyridine complexes for artificial light harvesting. Journal of Luminescence, 2011, 131, 1149-1153.	1.5	17
515	Raman Spectroscopic Imaging for the Realâ€Time Detection of Chemical Changes Associated with Docetaxel Exposure. ChemPhysChem, 2013, 14, 550-553.	1.0	17
516	Comparative two- and three-dimensional analysis of nanoparticle localization in different cell types by Raman spectroscopic imaging. Journal of Molecular Structure, 2014, 1073, 44-50.	1.8	17
517	Fast self-assembly of silver nanoparticle monolayer in hydrophobic environment and its application as SERS substrate. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	17
518	Nonâ€linear imaging and characterization of atherosclerotic arterial tissue using combined SHG and FLIM microscopy. Journal of Biophotonics, 2015, 8, 347-356.	1.1	17
519	Proof of concept of fiber dispersed Raman spectroscopy using superconducting nanowire single-photon detectors. Optics Express, 2015, 23, 5078.	1.7	17
520	Single cell analysis in native tissue: Quantification of the retinoid content of hepatic stellate cells. Scientific Reports, 2016, 6, 24155.	1.6	17
521	Elucidation of the COâ€Release Kinetics of CORMâ€A1 by Means of Vibrational Spectroscopy. ChemPhysChem, 2016, 17, 985-993.	1.0	17
522	Fundamental SERS Investigation of Pyridine and Its Derivates as a Function of Functional Groups, Their Substitution Position, and Their Interaction with Silver Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 2323-2332.	1.5	17

#	Article	IF	CITATIONS
523	Vibrational spectroscopic characterization of arylisoquinolines by means of Raman spectroscopy and density functional theory calculations. Physical Chemistry Chemical Physics, 2017, 19, 29918-29926.	1.3	17
524	Raman and infrared spectroscopy differentiate senescent from proliferating cells in a human dermal fibroblast 3D skin model. Analyst, The, 2017, 142, 4405-4414.	1.7	17
525	Spectral reconstruction for shifted-excitation Raman difference spectroscopy (SERDS). Talanta, 2018, 186, 372-380.	2.9	17
526	The application of UV resonance Raman spectroscopy for the differentiation of clinically relevant Candida species. Analytical and Bioanalytical Chemistry, 2018, 410, 5839-5847.	1.9	17
527	Theoretical principles of Raman spectroscopy. Physical Sciences Reviews, 2019, 4, .	0.8	17
528	Influence of Carbon Sources on Quantification of Deuterium Incorporation in Heterotrophic Bacteria: A Raman-Stable Isotope Labeling Approach. Analytical Chemistry, 2020, 92, 11429-11437.	3.2	17
529	Leukocyte Activation Profile Assessed by Raman Spectroscopy Helps Diagnosing Infection and Sepsis. , 2021, 3, e0394.		17
530	Stealth Effect of Short Polyoxazolines in Graft Copolymers: Minor Changes of Backbone End Group Determine Liver Cell-Type Specificity. ACS Nano, 2021, 15, 12298-12313.	7.3	17
531	Precise Encoding of Tripleâ€Bond Raman Scattering of Single Polymer Nanoparticles for Multiplexed Imaging Application. Angewandte Chemie - International Edition, 2021, 60, 21846-21852.	7.2	17
532	Nonresonant Raman spectroscopy of isolated human retina samples complying with laser safety regulations for in vivo measurements. Neurophotonics, 2019, 6, 1.	1.7	17
533	Beyond Beer's Law: Quasi-Ideal Binary Liquid Mixtures. Applied Spectroscopy, 2022, 76, 92-104.	1.2	17
534	Automated classification of healthy and keloidal collagen patterns based on processing of SHG images of human skin. Journal of Biophotonics, 2011, 4, 627-636.	1.1	16
535	Microfabricated polymer-substrates for SERS. Microelectronic Engineering, 2012, 98, 444-447.	1.1	16
536	Raman and infrared spectroscopic study of synthetic ungemachite, K3Na8Fe(SO4)6(NO3)2·6H2O. Journal of Molecular Structure, 2012, 1022, 147-152.	1.8	16
537	Blue emitting side-chain pendant 4-hydroxy-1,3-thiazoles in polystyrenes synthesized by RAFT polymerization. European Polymer Journal, 2012, 48, 1339-1347.	2.6	16
538	New methodology to process shifted excitation Raman difference spectroscopy data: a case study of pollen classification. Scientific Reports, 2020, 10, 11215.	1.6	16
539	Aptasensor for the detection of Methicillin resistant Staphylococcus aureus on contaminated surfaces. Biosensors and Bioelectronics, 2021, 176, 112910.	5.3	16
540	Recent technological and scientific developments concerning the use of infrared spectroscopy for point-of-care applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 251, 119411.	2.0	16

.,		15	Cizizionio
# 541	ARTICLE DNA tertiary structure and changes in DNA supercoiling upon interaction with ethidium bromide and gyrase monitored by UV resonance Raman spectroscopy. Journal of Raman Spectroscopy, 2007, 38, 1246-1258.	lF 1.2	CITATIONS
542	Chipâ€based detection system for the onâ€site analysis of animal diseases. Engineering in Life Sciences, 2011, 11, 148-156.	2.0	15
543	Synthesis and characterization of polymethacrylates containing conjugated oligo(phenylene) Tj ETQq1 1 0.7843	14 _{.rg} BT /C	verlock 10 15
544	Improving chemometric results by optimizing the dimension reduction for Raman spectral data sets. Journal of Raman Spectroscopy, 2014, 45, 930-940.	1.2	15
545	Ruthenium Imidazophenanthrolinium Complexes with Prolonged Excited tate Lifetimes. European Journal of Inorganic Chemistry, 2015, 2015, 3932-3939.	1.0	15
546	Non-instrumented DNA isolation, amplification and microarray-based hybridization for a rapid on-site detection of devastating Phytophthora kernoviae. Analyst, The, 2015, 140, 6610-6618.	1.7	15
547	Ultrafast in cellulo photoinduced dynamics processes of the paradigm molecular light switch [Ru(bpy)2dppz]2+. Scientific Reports, 2016, 6, 33547.	1.6	15
548	Remendable polymers via reversible Diels–Alder cycloaddition of anthracene ontaining copolymers with fullerenes. Journal of Applied Polymer Science, 2018, 135, 45916.	1.3	15
549	New perspectives for viability studies with high-content analysis Raman spectroscopy (HCA-RS). Scientific Reports, 2019, 9, 12653.	1.6	15
550	Towards Raman spectroscopy of urine as screening tool. Journal of Biophotonics, 2020, 13, e201900143.	1.1	15
551	Biochemical Characterization of Mouse Retina of an Alzheimer's Disease Model by Raman Spectroscopy. ACS Chemical Neuroscience, 2020, 11, 3301-3308.	1.7	15
552	Infrared refraction spectroscopy - Kramers-Kronig analysis revisited. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 270, 120799.	2.0	15
553	Determination of size changes of optically trapped gas bubbles by elastic light backscattering. Applied Optics, 1997, 36, 1638.	2.1	14
554	Origin of salt mixtures and mixed salts in atmospheric particulate matter. Journal of Raman Spectroscopy, 2012, 43, 514-519.	1.2	14
555	Spatially resolved investigation of the oil composition in single intact hyphae of Mortierella spp. with micro-Raman spectroscopy. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 341-349.	1.2	14
556	Single virus detection by means of atomic force microscopy in combination with advanced image analysis. Journal of Structural Biology, 2014, 188, 30-38.	1.3	14
557	Molecular self-healing mechanisms between C ₆₀ -fullerene and anthracene unveiled by Raman and two-dimensional correlation spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 17973-17982.	1.3	14
558	Fast label-free detection of Legionella spp. in biofilms by applying immunomagnetic beads and Raman spectroscopy. Systematic and Applied Microbiology, 2016, 39, 132-140.	1.2	14

#	Article	IF	CITATIONS
559	The Potential of Raman Spectroscopy for the Classification of Fish Fillets. Food Analytical Methods, 2016, 9, 1301-1306.	1.3	14
560	Polymerbasierte Halogenbrückendonoren mit selbstheilenden Eigenschaften in Filmen. Angewandte Chemie, 2017, 129, 4105-4110.	1.6	14
561	Multimodal image analysis in tissue diagnostics for skin melanoma. Journal of Chemometrics, 2018, 32, e2963.	0.7	14
562	Interference-Enhanced Raman Spectroscopy as a Promising Tool for the Detection of Biomolecules on Raman-Compatible Surfaces. Analytical Chemistry, 2018, 90, 9025-9032.	3.2	14
563	FLIm-Guided Raman Imaging to Study Cross-Linking and Calcification of Bovine Pericardium. Analytical Chemistry, 2020, 92, 10659-10667.	3.2	14
564	3-Step flow focusing enables multidirectional imaging of bioparticles for imaging flow cytometry. Lab on A Chip, 2020, 20, 1676-1686.	3.1	14
565	Detection and characterization of early plaque formations by Raman probe spectroscopy and optical coherence tomography: an in vivo study on a rabbit model. Journal of Biomedical Optics, 2018, 23, 1.	1.4	14
566	Excited-state dynamics of Ru(tbbpy)32+investigated by femtosecond time-resolved four-wave mixing. Laser Physics Letters, 2007, 4, 121-125.	0.6	13
567	Preparation and characterization of multicore SERS labels by controlled aggregation of gold nanoparticles. Vibrational Spectroscopy, 2012, 60, 79-84.	1.2	13
568	Utilizing Ancillary Ligands to Optimize the Photophysical Properties of 4 <i>H</i> â€Imidazole Ruthenium Dyes. ChemPhysChem, 2013, 14, 2973-2983.	1.0	13
569	Evidence for SERRS Enhancement in the Spectra of Ruthenium Dye–Metal Nanoparticle Conjugates. Journal of Physical Chemistry C, 2013, 117, 1121-1129.	1.5	13
570	The effect of silver thickness on the enhancement of polymer based SERS substrates. Nanotechnology, 2014, 25, 445203.	1.3	13
571	Ru dye functionalized Au–SiO2@TiO2 and Au/Pt–SiO2@TiO2 nanoassemblies for surface-plasmon-induced visible light photocatalysis. Journal of Colloid and Interface Science, 2014, 421, 114-121.	5.0	13
572	Exploitation of the hepatic stellate cell Raman signature for their detection in native tissue samples. Integrative Biology (United Kingdom), 2014, 6, 946-956.	0.6	13
573	Correction of mosaicking artifacts in multimodal images caused by uneven illumination. Journal of Chemometrics, 2017, 31, e2901.	0.7	13
574	Multiplex coherent anti-Stokes Raman scattering microspectroscopy of brain tissue with higher ranking data classification for biomedical imaging. Journal of Biomedical Optics, 2017, 22, 066005.	1.4	13
575	Raman and infrared spectroscopy reveal that proliferating and quiescent human fibroblast cells age by biochemically similar but not identical processes. PLoS ONE, 2018, 13, e0207380.	1.1	13
576	Nonlinear Multimodal Imaging Characteristics of Early Septic Liver Injury in a Mouse Model of Peritonitis. Analytical Chemistry, 2019, 91, 11116-11121.	3.2	13

#	Article	IF	CITATIONS
577	Eosinophils and Neutrophils—Molecular Differences Revealed by Spontaneous Raman, CARS and Fluorescence Microscopy. Cells, 2020, 9, 2041.	1.8	13
578	Monitoring Changes in Biochemical and Biomechanical Properties of Collagenous Tissues Using Label-Free and Nondestructive Optical Imaging Techniques. Analytical Chemistry, 2021, 93, 3813-3821.	3.2	13
579	Schwertmannite formation at cell junctions by a new filament-forming Fe(II)-oxidizing isolate affiliated with the novel genus Acidithrix. Microbiology (United Kingdom), 2016, 162, 62-71.	0.7	13
580	Structures for surface-enhanced nonplasmonic or hybrid spectroscopy. Nanophotonics, 2020, 9, 741-760.	2.9	13
581	Conformation and Hydrogen Bonding Properties of an Aziridinyl Peptide:Â X-ray Structure Analysis, Raman Spectroscopy and Theoretical Investigations. Journal of Physical Chemistry A, 2004, 108, 11398-11408.	1.1	12
582	Dispersion analysis of perpendicular modes in anisotropic crystals and layers. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 2428.	0.8	12
583	Raman spectroscopic determination of norbixin and tartrazine in sugar. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1244-1255.	1.1	12
584	Reactions of Alkaline Minerals in the Atmosphere. Angewandte Chemie - International Edition, 2013, 52, 1410-1413.	7.2	12
585	ZrO ₂ nanoparticles labeled via a native protein corona: detection by fluorescence microscopy and Raman microspectroscopy in rat lungs. Analyst, The, 2015, 140, 5120-5128.	1.7	12
586	Quantitative assessment of the degree of lipid unsaturation in intact Mortierella by Raman microspectroscopy. Analytical and Bioanalytical Chemistry, 2015, 407, 3303-3311.	1.9	12
587	Raman spectroscopic approach to monitor the in vitro cyclization of creatine→creatinine. Chemical Physics Letters, 2015, 618, 225-230.	1.2	12
588	Extremophile microbiomes in acidic and hypersaline river sediments of <scp>W</scp> estern <scp>A</scp> ustralia. Environmental Microbiology Reports, 2016, 8, 58-67.	1.0	12
589	HD DVD substrates for surface enhanced Raman spectroscopy analysis: fabrication, theoretical predictions and practical performance. RSC Advances, 2016, 6, 44163-44169.	1.7	12
590	Hepatic cirrhosis and recovery as reflected by Raman spectroscopy: information revealed by statistical analysis might lead to a prognostic biomarker. Analytical and Bioanalytical Chemistry, 2016, 408, 8053-8063.	1.9	12
591	Uptake of Retinoic Acidâ€Modified PMMA Nanoparticles in LXâ€2 and Liver Tissue by Raman Imaging and Intravital Microscopy. Macromolecular Bioscience, 2017, 17, 1700064.	2.1	12
592	Perspectives, potentials and trends of ex vivo and in vivo optical molecular pathology. Journal of Biophotonics, 2018, 11, e201700236.	1.1	12
593	TopUp SERS Substrates with Integrated Internal Standard. Materials, 2018, 11, 325.	1.3	12
594	SERS characterization of dopamine and <i>in situ</i> dopamine polymerization on silver nanoparticles. Physical Chemistry Chemical Physics, 2021, 23, 12158-12170.	1.3	12

#	Article	IF	CITATIONS
595	Morpho-molecular signal correlation between optical coherence tomography and Raman spectroscopy for superior image interpretation and clinical diagnosis. Scientific Reports, 2021, 11, 9951.	1.6	12
596	Isolation of bacteria from artificial bronchoalveolar lavage fluid using density gradient centrifugation and their accessibility by Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2021, 413, 5193-5200.	1.9	12
597	Noise Sources and Requirements for Confocal Raman Spectrometers in Biosensor Applications. Sensors, 2021, 21, 5067.	2.1	12
598	Looking for a perfect match: multimodal combinations of Raman spectroscopy for biomedical applications. Journal of Biomedical Optics, 2021, 26, .	1.4	12
599	Biochemical Analysis of Leukocytes after In Vitro and In Vivo Activation with Bacterial and Fungal Pathogens Using Raman Spectroscopy. International Journal of Molecular Sciences, 2021, 22, 10481.	1.8	12
600	COVID-19 Diagnostics: Past, Present, and Future. ACS Photonics, 2021, 8, 2827-2838.	3.2	12
601	Simulation of morphology-dependent resonances in the Raman spectra of optically levitated microspheres. Journal of Raman Spectroscopy, 1997, 28, 547-550.	1.2	11
602	Introduction to the Fundamentals of Raman Spectroscopy. Springer Series in Optical Sciences, 2010, , 21-42.	0.5	11
603	Excited-state annihilation in a homodinuclear ruthenium complex. Chemical Communications, 2011, 47, 3820.	2.2	11
604	Excited-State Dynamics of Protochlorophyllide Revealed by Subpicosecond Infrared Spectroscopy. Biophysical Journal, 2011, 100, 260-267.	0.2	11
605	Incorporation of Polymerizable Osmium(II) Bis-terpyridine Complexes into PMMA Backbones. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 74-80.	1.9	11
606	Redox State Sensitive Spectroscopy of the Model Compound [(H-dcbpy) ₂ Ru ^{II} (NCS) ₂] ^{2–} (dcbpy =) Tj ETQq0 0 0 rgBT /	Overbock 1	10 Ttf150 297 1
607	Growth of Hierarchically 3D Silver–Silica Hybrid Nanostructures by Metastable State Assisted Atomic Layer Deposition (MSâ€ALD). Advanced Materials Technologies, 2017, 2, 1700015.	3.0	11
608	Advances in laser concepts for multiplex, coherent Raman scattering micro-spectroscopy and imaging. TrAC - Trends in Analytical Chemistry, 2018, 102, 103-109.	5.8	11
609	Electric field standing wave effects in internal reflection and ATR spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 191, 165-171.	2.0	11
610	High-throughput screening Raman microspectroscopy for assessment of drug-induced changes in diatom cells. Analyst, The, 2019, 144, 4488-4492.	1.7	11
611	Raman Signal Enhancement Tunable by Gold-Covered Porous Silicon Films with Different Morphology. Sensors, 2020, 20, 5634.	2.1	11
612	The Bouguerâ€Beerâ€Lambert Law: Shining Light on the Obscure. ChemPhysChem, 2020, 21, 2028-2028.	1.0	11

#	ARTICLE	IF	CITATIONS
613	Differential response of liver sinusoidal endothelial cells and hepatocytes to oleic and palmitic acid revealed by Raman and CARS imaging. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165763.	1.8	11
614	Low-cost colorimetric diagnostic screening assay for methicillin resistant Staphylococcus aureus. Talanta, 2021, 225, 121946.	2.9	11
615	Multimodal Molecular Imaging and Identification of Bacterial Toxins Causing Mushroom Soft Rot and Cavity Disease. ChemBioChem, 2021, 22, 2901-2907.	1.3	11
616	Spatially Resolving the Enhancement Effect in Surface-Enhanced Coherent Anti-Stokes Raman Scattering by Plasmonic Doppler Gratings. ACS Nano, 2021, 15, 809-818.	7.3	11
617	Nondestructive 3D imaging and quantification of hydrated biofilm matrix by confocal Raman microscopy coupled with non-negative matrix factorization. Water Research, 2022, 210, 117973.	5.3	11
618	Fiber Probe-Based Raman Spectroscopic Identification of Pathogenic Infection Microorganisms on Agar Plates. Analytical Chemistry, 2022, 94, 4635-4642.	3.2	11
619	Raman spectroscopic study of spatial distribution of propolis in comb ofApis mellifera carnica(Pollm.). Biopolymers, 2003, 72, 217-224.	1.2	10
620	Combination of Patch Clamp and Raman Spectroscopy for Single-Cell Analysis. Analytical Chemistry, 2011, 83, 344-350.	3.2	10
621	Metal-Mediated Reaction Modeled on Nature: The Activation of Isothiocyanates Initiated by Zinc Thiolate Complexes. Inorganic Chemistry, 2011, 50, 3223-3233.	1.9	10
622	Resonance-Raman microspectroscopy for quality assurance of dye-sensitized NiOx films with respect to dye desorption kinetics in water. Physical Chemistry Chemical Physics, 2012, 14, 15185.	1.3	10
623	Investigation of adhesive–dentin interfaces using Raman microspectroscopy and small angle Xâ€ray scattering. Journal of Raman Spectroscopy, 2012, 43, 6-15.	1.2	10
624	Spectroscopy on Single Metallic Nanoparticles Using Subwavelength Apertures. Journal of Physical Chemistry C, 2013, 117, 7751-7756.	1.5	10
625	Automated seeding-based nuclei segmentation in nonlinear optical microscopy. Applied Optics, 2013, 52, 6979.	0.9	10
626	Raman-Spectroscopy Based Cell Identification on a Microhole Array Chip. Micromachines, 2014, 5, 204-215.	1.4	10
627	In vitro monitoring of ring opening of leflunomide: A surface enhanced Raman scattering and DFT based approach. Chemical Physics Letters, 2014, 613, 127-132.	1.2	10
628	Bessel beam CARS of axially structured samples. Scientific Reports, 2015, 5, 10991.	1.6	10
629	Bessel beam coherent anti-Stokes Raman scattering microscopy. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1773.	0.9	10
630	Surface enhanced Raman scattering based reaction monitoring of in vitro decyclization of creatinine → creatine. RSC Advances, 2016, 6, 58943-58949.	1.7	10

#	Article	IF	CITATIONS
631	A Water-Soluble Mn(CO)3-Based and Non-Toxic PhotoCORM for Administration of Carbon Monoxide Inside of Cells. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 2057-2062.	0.6	10
632	Improving Poor Man's Kramers-Kronig analysis and Kramers-Kronig constrained variational analysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 213, 391-396.	2.0	10
633	Assessment of shifted excitation Raman difference spectroscopy in highly fluorescent biological samples. Analyst, The, 2021, 146, 6760-6767.	1.7	10
634	Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy. Laser Physics Letters, 2011, 8, 541-546.	0.6	9
635	Quantification of the inorganic phase of the pelagic aggregates from an iron contaminated lake by means of Raman spectroscopy. Vibrational Spectroscopy, 2013, 68, 212-219.	1.2	9
636	Raman Spectroscopic Insights into the Chemical Gradients within the Wound Plug of the Green Alga <i>Caulerpa taxifolia</i> . ChemBioChem, 2013, 14, 727-732.	1.3	9
637	Fluorescence Study of Energy Transfer in PMMA Polymers with Pendant Oligoâ€Phenyleneâ€Ethynylenes. ChemPhysChem, 2013, 14, 170-178.	1.0	9
638	Vibrational phase imaging in wide-field CARS for nonresonant background suppression. Optics Express, 2015, 23, 10756.	1.7	9
639	Dispersion analysis with inverse dielectric function modelling. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 168, 212-217.	2.0	9
640	Raman Spectroscopic Characterization of Packaged <i>L. pneumophila</i> Strains Expelled by <i>T. thermophila</i> . Analytical Chemistry, 2016, 88, 2533-2537.	3.2	9
641	Investigation of Microalgal Carotenoid Content Using Coherent Anti tokes Raman Scattering (CARS) Microscopy and Spontaneous Raman Spectroscopy. ChemPhysChem, 2018, 19, 1048-1055.	1.0	9
642	Surface enhanced Raman spectroscopyâ€detection of the uptake of mannoseâ€modified nanoparticles by macrophages in vitro: A model for detection of vulnerable atherosclerotic plaques. Journal of Biophotonics, 2018, 11, e201800013.	1.1	9
643	Invited Article: Comparison of hyperspectral coherent Raman scattering microscopies for biomedical applications. APL Photonics, 2018, 3, 092404.	3.0	9
644	Raman ChemLighter: Fiber optic Raman probe imaging in combination with augmented chemical reality. Journal of Biophotonics, 2019, 12, e201800447.	1.1	9
645	CARS-imaging guidance for fs-laser ablation precision surgery. Analyst, The, 2019, 144, 7310-7317.	1.7	9
646	High-content screening Raman spectroscopy (HCS-RS) of panitumumab-exposed colorectal cancer cells. Analyst, The, 2019, 144, 6098-6107.	1.7	9
647	Development of rapid colorimetric assay for the detection of Influenza A and B viruses. Talanta, 2021, 221, 121468.	2.9	9
648	Raman <scp>¹⁸Oâ€labeling</scp> of bacteria in visible and deep <scp>UVâ€ranges</scp> . Journal of Biophotonics, 2021, 14, e202100013.	1.1	9

#	Article	IF	CITATIONS
649	Dual crosslinked metallopolymers using orthogonal metal complexes as rewritable shape-memory polymers. Journal of Materials Chemistry A, 2021, 9, 15051-15058.	5.2	9
650	In Vitro Fiber-Probe-Based Identification of Pathogens in Biofilms by Raman Spectroscopy. Analytical Chemistry, 2022, 94, 5375-5381.	3.2	9
651	Labelâ€free differentiation of clinical <i>E. coli</i> and <i>Klebsiella</i> isolates with Raman spectroscopy. Journal of Biophotonics, 2022, 15, e202200005.	1.1	9
652	Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range. Review of Scientific Instruments, 2012, 83, 123103.	0.6	8
653	Toward improving fine needle aspiration cytology by applying Raman microspectroscopy. Journal of Biomedical Optics, 2013, 18, 047001.	1.4	8
654	Potential of <i>Ypt1</i> and <scp>ITS</scp> gene regions for the detection of <i>Phytophthora</i> species in a labâ€onâ€aâ€chip <scp>DNA</scp> hybridization array. Plant Pathology, 2015, 64, 1176-1189.	1.2	8
655	Hepatic Vitamin A Content Investigation Using Coherent <i>Anti</i> tokes Raman Scattering Microscopy. ChemPhysChem, 2016, 17, 4043-4051.	1.0	8
656	Markerfreie molekulare Bildgebung biologischer Zellen und Gewebe durch lineare und nichtlineare Ramanâ€spektroskopische AnsÃæe. Angewandte Chemie, 2017, 129, 4458-4500.	1.6	8
657	Analysis of basidiomycete pigments in situ by Raman spectroscopy. Journal of Biophotonics, 2018, 11, e201700369.	1.1	8
658	Wide Field Spectral Imaging with Shifted Excitation Raman Difference Spectroscopy Using the Nod and Shuffle Technique. Sensors, 2020, 20, 6723.	2.1	8
659	Combined Raman and AFM detection of changes in HeLa cervical cancer cells induced by CeO ₂ nanoparticles – molecular and morphological perspectives. Analyst, The, 2020, 145, 3983-3995.	1.7	8
660	PC 2D-COS: A Principal Component Base Approach to Two-Dimensional Correlation Spectroscopy. Applied Spectroscopy, 2020, 74, 460-472.	1.2	8
661	Nondestructive molecular imaging by Raman spectroscopy <i>vs.</i> marker detection by MALDI IMS for an early diagnosis of HCC. Analyst, The, 2021, 146, 1239-1252.	1.7	8
662	Raman Stable Isotope Probing of Bacteria in Visible and Deep UV-Ranges. Life, 2021, 11, 1003.	1.1	8
663	Development and evaluation of a hand-held fiber-optic Raman probe with an integrated autofocus unit. Optics Express, 2020, 28, 30760.	1.7	8
664	Boosting Efficiency in Lightâ€Driven Water Splitting by Dynamic Irradiation through Synchronizing Reaction and Transport Processes**. ChemSusChem, 2022, 15, .	3.6	8
665	Monitoring intra-cellular lipid metabolism in macrophages by Raman- and CARS-microscopy. , 2010, , .		7
666	The impact of bromine substitution on the photophysical properties of a homodinuclear Ru–tpphz–Ru complex. Chemical Physics Letters, 2011, 516, 45-50.	1.2	7

#	Article	IF	CITATIONS
667	Mechanism of protonation induced changes in Raman spectra of a trisheteroleptic ruthenium complex revealed by DFT calculations. RSC Advances, 2013, 3, 5597.	1.7	7
668	Chemo-spectroscopic sensor for carboxyl terminus overexpressed in carcinoma cell membrane. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1831-1839.	1.7	7
669	Highâ€ŧhroughput screening of measuring conditions for an optimized SERS detection. Journal of Raman Spectroscopy, 2016, 47, 1003-1011.	1.2	7
670	Fastâ€Track, One‣tep <i>E. coli</i> Detection: A Miniaturized Hydrogel Array Permits Specific Direct PCR and DNA Hybridization while Amplification. Macromolecular Bioscience, 2016, 16, 1325-1333.	2.1	7
671	The interaction of an amino-modified ZrO2 nanomaterial with macrophages—an in situ investigation by Raman microspectroscopy. Analytical and Bioanalytical Chemistry, 2016, 408, 5935-5943.	1.9	7
672	Pioneering particle-based strategy for isolating viable bacteria from multipart soil samples compatible with Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2017, 409, 3779-3788.	1.9	7
673	Recursive feature elimination in Raman spectra with support vector machines. Frontiers of Optoelectronics, 2017, 10, 273-279.	1.9	7
674	Hydrogel-Embedded Model Photocatalytic System Investigated by Raman and IR Spectroscopy Assisted by Density Functional Theory Calculations and Two-Dimensional Correlation Analysis. Journal of Physical Chemistry A, 2018, 122, 2677-2687.	1.1	7
675	Generalized dispersion analysis of crystals with unknown symmetry and orientation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 205, 348-363.	2.0	7
676	Designable Spectrometer-Free Index Sensing Using Plasmonic Doppler Gratings. Analytical Chemistry, 2019, 91, 9382-9387.	3.2	7
677	Micro-Raman spectroscopy in medicine. Physical Sciences Reviews, 2019, 4, .	0.8	7
678	Shape-Memory Metallopolymer Networks Based on a Triazole–Pyridine Ligand. Polymers, 2019, 11, 1889.	2.0	7
679	Vibrational spectroscopy as a powerful tool for follow-up immunoadsorption therapy treatment of dilated cardiomyopathy $\hat{a} \in $ a case report. Analyst, The, 2020, 145, 486-496.	1.7	7
680	Investigating Origins of FLIm Contrast in Atherosclerotic Lesions Using Combined FLIm-Raman Spectroscopy. Frontiers in Cardiovascular Medicine, 2020, 7, 122.	1.1	7
681	Automated and rapid identification of multidrug resistant Escherichia coli against the lead drugs of acylureidopenicillins, cephalosporins, and fluoroquinolones using specific Raman marker bands. Journal of Biophotonics, 2020, 13, e202000149.	1.1	7
682	Bacterial phenotype dependency from CO2 measured by Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 248, 119170.	2.0	7
683	Surface-Enhanced Raman Spectroscopy to Characterize Different Fractions of Extracellular Vesicles from Control and Prostate Cancer Patients. Biomedicines, 2021, 9, 580.	1.4	7
684	In-depth characterization of self-healing polymers based on π–π nteractions. Beilstein Journal of Organic Chemistry, 2021, 17, 2496-2504.	1.3	7

#	Article	IF	CITATIONS
685	Fiber-based SORS-SERDS system and chemometrics for the diagnostics and therapy monitoring of psoriasis inflammatory disease in vivo. Biomedical Optics Express, 2021, 12, 1123.	1.5	7
686	Non-invasive Imaging Techniques: From Histology to In Vivo Imaging. Recent Results in Cancer Research, 2020, 216, 795-812.	1.8	7
687	Identification of inflammatory markers in eosinophilic cells of the immune system: fluorescence, Raman and CARS imaging can recognize markers but differently. Cellular and Molecular Life Sciences, 2022, 79, 1.	2.4	7
688	Raman Spectroscopy—A Powerful Tool for in situ Planetary Science. Space Sciences Series of ISSI, 2008, , 281-292.	0.0	6
689	Probing the structure and Franck–Condon region of protochlorophyllide <i>a</i> through analysis of the Raman and resonance Raman spectra. Journal of Raman Spectroscopy, 2010, 41, 414-423.	1.2	6
690	Ruthenium(II)-bis(4′-(4-ethynylphenyl)-2,2′:6′, 2″-terpyridine) — A versatile synthon in supramolecula chemistry. Synthesis and characterization. Open Chemistry, 2011, 9, 990-999.	^r 1.0	6
691	Chelating Fluorene Dyes as Mono- and Ditopic 2-(1H-1,2,3-Triazol-4-yl)pyridine Ligands and Their Corresponding Ruthenium(II) Complexes. Synthesis, 2012, 44, 2287-2294.	1.2	6
692	Förster resonance energy transfer in poly(methyl methacrylates) copolymers bearing donor-acceptor 1,3-thiazole dyes. Journal of Polymer Science Part A, 2013, 51, 4765-4773.	2.5	6
693	Modified bibenzimidazole ligands as spectator ligands in photoactive molecular functional Ru-polypyridine units? Implications from spectroscopy. Dalton Transactions, 2014, 43, 17659-17665.	1.6	6
694	On-site detection of Phytophthora spp.—single-stranded target DNA as the limiting factor to improve on-chip hybridization. Mikrochimica Acta, 2014, 181, 1669-1679.	2.5	6
695	Single particle analysis of herpes simplex virus: comparing the dimensions of one and the same virions via atomic force and scanning electron microscopy. Analytical and Bioanalytical Chemistry, 2016, 408, 4035-4041.	1.9	6
696	Surface Enhanced Raman Spectroscopy for Medical Diagnostics. , 2018, , 1-66.		6
697	Raman spectroscopy-based identification of toxoid vaccine products. Npj Vaccines, 2018, 3, 50.	2.9	6
698	Quantitation of acute monocytic leukemia cellsÂspiked in control monocytes using surface-enhanced Raman spectroscopy. Analytical Methods, 2018, 10, 2785-2791.	1.3	6
699	Raman spectroscopic investigation of the human liver stem cell line HepaRG. Journal of Raman Spectroscopy, 2018, 49, 935-942.	1.2	6
700	Label-free molecular mapping and assessment of glycogen in <i>C. elegans</i> . Analyst, The, 2019, 144, 2367-2374.	1.7	6
701	FLIm and Raman Spectroscopy for Investigating Biochemical Changes of Bovine Pericardium upon Genipin Cross-Linking. Molecules, 2020, 25, 3857.	1.7	6
702	Predictive Modeling of Antibiotic Susceptibility in E. Coli Strains Using the U-Net Network and One-Class Classification. IEEE Access, 2020, 8, 167711-167720.	2.6	6

#	Article	IF	CITATIONS
703	Rapid Raman Spectroscopic Analysis of Stress Induced Degradation of the Pharmaceutical Drug Tetracycline. Molecules, 2020, 25, 1866.	1.7	6
704	Ultra ompact tunable fiber laser for coherent anti tokes Raman imaging. Journal of Raman Spectroscopy, 2021, 52, 1561-1568.	1.2	6
705	Infrared Refraction Spectroscopy. Applied Spectroscopy, 2021, 75, 1526-1531.	1.2	6
706	Novel Biobased Selfâ€Healing Ionomers Derived from Itaconic Acid Derivates. Macromolecular Rapid Communications, 2021, 42, 2000636.	2.0	6
707	Simultaneous Infrared Spectroscopy, Raman Spectroscopy, and Luminescence Sensing: A Multispectroscopic Analytical Platform. ACS Measurement Science Au, 2022, 2, 157-166.	1.9	6
708	Clostridium spp. discrimination with a simple bead-based fluorescence assay. Analytical Methods, 2014, 6, 2943.	1.3	5
709	Photonic monitoring of treatment during infection and sepsis: development of new detection strategies and potential clinical applications. Analytical and Bioanalytical Chemistry, 2018, 410, 773-790.	1.9	5
710	Multimodal Nonlinear Microscopy for Therapy Monitoring of Cold Atmospheric Plasma Treatment. Micromachines, 2019, 10, 564.	1.4	5
711	Medical needs for translational biophotonics with the focus on Ramanâ€based methods. Translational Biophotonics, 2019, 1, e201900018.	1.4	5
712	Comparison of standard and HD FT-IR with multimodal CARS/TPEF/SHG/FLIMS imaging in the detection of the early stage of pulmonary metastasis of murine breast cancer. Analyst, The, 2020, 145, 4982-4990.	1.7	5
713	Characterization of a library of vitamin A-functionalized polymethacrylate-based nanoparticles for siRNA delivery. Polymer Chemistry, 2021, 12, 911-925.	1.9	5
714	Multimodal Scanning Microscope Combining Optical Coherence Tomography, Raman Spectroscopy and Fluorescence Lifetime Microscopy for Mesoscale Label-Free Imaging of Tissue. Analytical Chemistry, 2021, 93, 11479-11487.	3.2	5
715	Revealing the Chemical Composition of Birch Pollen Grains by Raman Spectroscopic Imaging. International Journal of Molecular Sciences, 2022, 23, 5112.	1.8	5
716	Raman-based detection of ciprofloxacin and its degradation in pharmaceutical formulations. Talanta, 2022, 250, 123719.	2.9	5
717	Introduction of a high-pressure cell for use with Raman microscopy. Journal of Raman Spectroscopy, 2006, 37, 442-446.	1.2	4
718	Characterization of atherosclerotic plaque-depositions by infrared, Raman and CARS microscopy. Proceedings of SPIE, 2011, , .	0.8	4
719	Analytical biophotonics. Analytical and Bioanalytical Chemistry, 2011, 400, 2685-2686.	1.9	4
720	FTIR microscopic imaging of carcinoma tissue section with 4× and 15× objectives: Practical considerations. Biomedical Spectroscopy and Imaging, 2015, 4, 57-66.	1.2	4

Juergen Popp

#	Article	IF	CITATIONS
721	Preface: Pharmaceutical applications of Raman spectroscopy — From diagnosis to therapeutics. Advanced Drug Delivery Reviews, 2015, 89, 1-2.	6.6	4
722	Hydrogel Decorated Chips for Convenient DNA Test. Macromolecular Chemistry and Physics, 2016, 217, 959-965.	1.1	4
723	Raman-based identification of circulating tumor cells for cancer diagnosis. Proceedings of SPIE, 2016,	0.8	4
724	Dual-focus coherent anti-Stokes Raman scattering microscopy using a compact two-beam fiber laser source. Optics Letters, 2017, 42, 183.	1.7	4
725	Introduction to the Fundamentals of Raman Spectroscopy. Springer Series in Surface Sciences, 2018, , 47-68.	0.3	4
726	Raman Micro-spectral Imaging of Cells and Intracellular Drug Delivery Using Nanocarrier Systems. Springer Series in Surface Sciences, 2018, , 273-305.	0.3	4
727	Kinetic-Model-Free Analysis of Transient Absorption Spectra Enabled by 2D Correlation Analysis. Journal of Physical Chemistry Letters, 2021, 12, 4148-4153.	2.1	4
728	Probing Protein Secondary Structure Influence on Active Centers with Hetero Two-Dimensional Correlation (Resonance) Raman Spectroscopy: A Demonstration on Cytochrome C. Applied Spectroscopy, 2021, 75, 1043-1052.	1.2	4
729	A Study in Red: The Overlooked Role of Azoâ€Moieties in Polymeric Carbon Nitride Photocatalysts with Strongly Extended Optical Absorption. Chemistry - A European Journal, 2021, 27, 17188-17202.	1.7	4
730	Mapping the binding region of aptamer targeting small molecule: Dabigatran etexilate, an anti-coagulant. Talanta, 2020, 218, 121132.	2.9	4
731	Hybrid 2D Correlation-Based Loss Function for the Correction of Systematic Errors. Analytical Chemistry, 2022, 94, 695-703.	3.2	4
732	To generate a photonic nanojet outside a high refractive index microsphere illuminated by a Gaussian beam. Optics Letters, 2022, 47, 2534.	1.7	4
733	Phenotypic Differentiation of Autotrophic and Heterotrophic Bacterial Cells Using Raman-D ₂ 0 Labeling. Analytical Chemistry, 2022, 94, 7759-7766.	3.2	4
734	Raman Spectroscopy – A Suitable Tool for in-situ Planetary Science. Microscopy and Microanalysis, 2003, 9, 1100-1101.	0.2	3
735	The multifunctional application of microfluidic lab-on-a-chip surface enhanced Raman spectroscopy (LOC-SERS) within the field of bioanalytics. , 2011, , .		3
736	Development of a fiber-based Raman probe for clinical diagnostics. , 2011, , .		3
737	Spectrally shaped light from supercontinuum fiber light sources. Optics Communications, 2011, 284, 1970-1974.	1.0	3
738	The ERA2 facility: towards application of a fibre-based astronomical spectrograph for imaging spectroscopy in life sciences. Proceedings of SPIE, 2012, , .	0.8	3

#	Article	IF	CITATIONS
739	Lab-on-a-Chip Surface-Enhanced Raman Spectroscopy. Springer Series on Chemical Sensors and Biosensors, 2012, , 229-245.	0.5	3
740	Convenient detection of E. coli in Ringer's solution. Analyst, The, 2013, 138, 5866.	1.7	3
741	Fast and Selective Against Bacteria. Optik & Photonik, 2013, 8, 36-39.	0.3	3
742	TopUp Plasmonic Arrays for Surfaceâ€Enhanced Raman Spectroscopy. Advanced Materials Interfaces, 2016, 3, 1600549.	1.9	3
743	IR-ATR investigation of surface anisotropy in silicate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 173, 608-617.	2.0	3
744	Thermal illumination limits in 3D Raman microscopy: A comparison of different sample illumination strategies to obtain maximum imaging speed. PLoS ONE, 2019, 14, e0220824.	1.1	3
745	Isolation of pathogenic bacteria from sputum samples using a 3D-printed cartridge system. Analytical Methods, 2021, 13, 4884-4895.	1.3	3
746	FLIM data analysis based on Laguerre polynomial decomposition and machine-learning. Journal of Biomedical Optics, 2021, 26, .	1.4	3
747	In vivo coherent anti‣tokes Raman scattering microscopy reveals vitamin A distribution in the liver. Journal of Biophotonics, 2021, 14, e202100040.	1.1	3
748	Comparison of functional and discrete data analysis regimes for Raman spectra. Analytical and Bioanalytical Chemistry, 2021, 413, 5633-5644.	1.9	3
749	Activity and electron donor preference of two denitrifying bacterial strains identified by Raman gas spectroscopy. Analytical and Bioanalytical Chemistry, 2022, 414, 601-611.	1.9	3
750	Resonant Light Scattering: from Diatomic Molecules to Laser-Trapped Microparticles. Journal of the Brazilian Chemical Society, 1996, 7, 411-434.	0.6	3
751	Smart Error Sum Based on Hybrid Two-Trace Two-Dimensional (2T2D) Correlation Analysis. Applied Spectroscopy, 2023, 77, 583-592.	1.2	3
752	Comparison of conventional and shifted excitation Raman difference spectroscopy for bacterial identification. Journal of Raman Spectroscopy, 2022, 53, 1285-1292.	1.2	3
753	UV-Resonance Raman spectroscopic investigation of human plasma for medical diagnosis. Medical Laser Application: International Journal for Laser Treatment and Research, 2007, 22, 87-93.	0.4	2
754	Fabrication of regular patterned SERS arrays by electron beam lithography. Proceedings of SPIE, 2010, ,	0.8	2
755	FTIR, Raman, and CARS microscopic imaging for histopathologic assessment of brain tumors. Proceedings of SPIE, 2010, , .	0.8	2
756	Raman‣pektroskopie. Biomedizinische Diagnostik. Chemie in Unserer Zeit, 2011, 45, 14-23.	0.1	2

#	Article	IF	CITATIONS
757	Discrimination of skin diseases using the multimodal imaging approach. , 2012, , .		2
758	Non-invasive label-free investigation and typing of head and neck cancers by multimodal nonlinear microscopy. Proceedings of SPIE, 2012, , .	0.8	2
759	Raman spectroscopic investigation of the interaction of Enterococcus faecalis and vancomycin: towards a culture-independent antibiotic susceptibility test. Critical Care, 2012, 16, .	2.5	2
760	Wound plug chemistry and morphology of two species of Caulerpa – a comparative Raman microscopy study. Botanica Marina, 2014, 57, 1-7.	0.6	2
761	Raman-Based Technologies for Biomedical Diagnostics. , 2014, , 189-208.		2
762	A special issue on Biophotonics in Europe. Frontiers of Optoelectronics, 2017, 10, 203-210.	1.9	2
763	Raman spectroscopy for the characterization of antimicrobial photodynamic therapy against Staphylococcus epidermidis. Journal of Raman Spectroscopy, 2018, 49, 1907-1910.	1.2	2
764	Molecular Specific and Sensitive Detection of Pyrazinamide and Its Metabolite Pyrazinoic Acid by Means of Surface Enhanced Raman Spectroscopy Employing In Situ Prepared Colloids. Applied Sciences (Switzerland), 2019, 9, 2511.	1.3	2
765	Rapid Isolation and Identification of Pneumonia-Associated Pathogens from Sputum Samples Combining an Innovative Sample Preparation Strategy and Array-Based Detection. ACS Omega, 2019, 4, 10362-10369.	1.6	2
766	Sample preparation for Raman microspectroscopy. ChemistrySelect, 2020, 5, .	0.7	2
767	Surface enhanced Raman spectroscopyâ€based evaluation of the membrane protein composition of the organohalideâ€respiring Sulfurospirillum multivorans. Journal of Raman Spectroscopy, 2021, 52, 458-467.	1.2	2
768	New Methods for the Functionalization of Polymer Matrices with Thiomolybdate Clusters Applied for Hydrogen Evolution Reaction Catalysis. Advanced Energy and Sustainability Research, 0, , 2100085.	2.8	2
769	PHYSICAL CHEMISTRY AND BIOPHYSICS OF SINGLE TRAPPED MICROPARTICLES. Advanced Series in Applied Physics, 2010, , 107-128.	0.0	2
770	Structural and Biochemical Changes in Pericardium upon Genipin Cross-Linking Investigated Using Nondestructive and Label-Free Imaging Techniques. Analytical Chemistry, 2022, 94, 1575-1584.	3.2	2
771	Understanding viruses and viral infections by biophotonic methods. Translational Biophotonics, O, , .	1.4	2
772	Synthesis and Characterization of Metallopolymer Networks Featuring Triple Shape-Memory Ability Based on Different Reversible Metal Complexes. Polymers, 2022, 14, 1833.	2.0	2
773	Infrared spectroscopy of quasi-ideal binary liquid mixtures: The challenges of conventional chemometric regression. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 280, 121518.	2.0	2
774	Rapid identification of single microbes by various Raman spectroscopic techniques. , 2006, , .		1

ic tec es., 200 Ч ıg

#	Article	IF	CITATIONS
775	Wasserstoff durch mehrkernige Metallkomplexe. Nachrichten Aus Der Chemie, 2007, 55, 970-974.	0.0	1
776	Fast and reliable identification of microorganisms by means of Raman spectroscopy. , 2007, , .		1
777	Fast and reliable identification of microorganisms by means of Raman spectroscopy. , 2007, , .		1
778	A microfluidic platform for chip-based DNA detection using SERS and silver colloids. Proceedings of SPIE, 2010, , .	0.8	1
779	Applications of Raman Spectroscopy to Virology and Microbial Analysis. Biological and Medical Physics Series, 2010, , 439-463.	0.3	1
780	Identification Of Pathogenic Bacteria Extracted From Milk On Single-Cell-Level By Means Of Micro-Raman Spectroscopy. , 2010, , .		1
781	The Influence of Intracellular Storage Material on Bacterial Identification by means of Raman Spectroscopy. , 2010, , .		1
782	Biomedical imaging by means of linear and non-linear Raman microspectroscopy. , 2010, , .		1
783	Two channel microfluidic CARS for quantifying pure vibrational contrast of model analytes. Proceedings of SPIE, 2010, , .	0.8	1
784	Photo-induced processes in new materials for electro-optical applications. Proceedings of SPIE, 2010, ,	0.8	1
785	Nonlinear microscopy and infrared and Raman microspectroscopy for brain tumor analysis. Proceedings of SPIE, 2011, , .	0.8	1
786	Nonlinear optical imaging: toward chemical imaging during neurosurgery. Proceedings of SPIE, 2011, , .	0.8	1
787	Bacterial identification in real samples by means of micro-Raman spectroscopy. Proceedings of SPIE, 2011, , .	0.8	1
788	Two-channel microfluidic CARS: experimental quantification of pure vibrational contrast in CARS images. Proceedings of SPIE, 2011, , .	0.8	1
789	The multifunctional application of microfluidic lab-on-a-chip surface enhanced Raman spectroscopy (LOC-SERS) within the field of bioanalytics. , 2011, , .		1
790	Characterization and bioanalytical application of innovative plasmonic nanostructures. Proceedings of SPIE, 2011, , .	0.8	1
791	Raman spectroscopy - An essential tool for biophotonics. , 2011, , .		1
792	A fiber coupled and stabilized microscope for analytical CARS micro-spectroscopy. Laser Physics Letters, 2013, 10, 065605.	0.6	1

#	Article	IF	CITATIONS
793	Cell identification using Raman spectroscopy in combination with optical trapping and microfluidics. , 2014, , .		1
794	Selfâ€defining treeâ€like classifiers for interpretation of Raman spectroscopic experiments. Journal of Chemometrics, 2016, 30, 268-283.	0.7	1
795	Prof. Dr Dr h.c. Wolfgang Kiefer An appreciation of Wolfgang Kiefer on the occasion of his 75th birthday. Journal of Raman Spectroscopy, 2016, 47, 1001-1002.	1.2	1
796	Non-linear multimodal imaging for disease diagnostics and treatment monitoring. , 2017, , .		1
797	Sensitive detection of organic pollutants by advanced nanostructures. , 2020, , 35-74.		1
798	1. Theoretical principles of Raman spectroscopy. , 2020, , 1-14.		1
799	3. Sample preparation for Raman microspectroscopy. , 2020, , 61-80.		1
800	Assessment of Advanced Oxidation Processes Using Zebrafish in a Non-Forced Exposure System: A Proof of Concept. Processes, 2021, 9, 734.	1.3	1
801	Precise Encoding of Tripleâ€Bond Raman Scattering of Single Polymer Nanoparticles for Multiplexed Imaging Application. Angewandte Chemie, 2021, 133, 22017-22023.	1.6	1
802	Reply to comment on Improving Poor Man's Kramers-Kronig analysis and Kramers-Kronig constrained variational analysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 261, 120071.	2.0	1
803	Simple and rapid peptide nanoprobe biosensor for the detection of Legionellaceae. Analyst, The, 2021, 146, 3568-3577.	1.7	1
804	Detection of gas molecules by means of spectrometric and spectroscopic methods. , 2020, , 251-294.		1
805	Characterization of silver nanoparticles deposited by an enzyme. , 2007, , .		1
806	Characterization of atherosclerotic arterial tissue using combined SHG and FLIM microscopy. , 2015, , .		1
807	High-throughput screening Raman spectroscopy (HTS-RS) platform for label-free single cell analysis. , 2019, , .		1
808	6.4 - Bildgebende Differenz-Raman-Spektroskopie mit "Nod-and-Shuffle"-Technik. , 2019, , .		1
809	Characterization and bioanalytical application of innovative plasmonic nanostructures. , 2011, , .		1
810	Intraoperative multimodal imaging. , 2022, , 561-581.		1

#	Article	IF	CITATIONS
811	A Model System for Sensitive Detection of Viable E. coli Bacteria Combining Direct Viability PCR and a Novel Microarray-Based Detection Approach. Chemosensors, 2021, 9, 357.	1.8	1
812	Mit optischer Spektroskopie auf der Spur von Bioaerosolen. Nachrichten Aus Der Chemie, 2003, 51, 995-998.	0.0	0
813	Femtosekundenlaser-Mikroskopie – Nichtlineare optische Phäomene revolutionieren Spektroskopie und Mikroskopie. Laser Technik Journal, 2005, 2, 67-71.	0.4	0
814	Photonik in der Life Science Forschung. Optik & Photonik, 2006, 1, 40-45.	0.3	0
815	SERS as analytical tool for detection of bacteria. Proceedings of SPIE, 2007, , .	0.8	0
816	Toward an understanding of the mode of action of fluoroquinolone drugs. Proceedings of SPIE, 2007, , .	0.8	0
817	Licht im Kampf gegen Krebs und andere Volkskrankheiten. Optik & Photonik, 2008, 3, 32-35.	0.3	0
818	Identification of active fluorescence stained bacteria by Raman spectroscopy. , 2008, , .		0
819	Particles formed by enzymatic silver deposition for DNA detection by means of SERS. AIP Conference Proceedings, 2008, , .	0.3	0
820	Existing and future challenges of multi-dimensional microscopy and imaging for life sciences and biomedicine. , 2009, , .		0
821	The implementation of an isotope-edited internal standard for quantification of lowest drug concentrations using surface enhanced Raman spectroscopy (SERS) in a lab on a chip device. Proceedings of SPIE, 2009, , .	0.8	0
822	Raman meets medicine: Raman spectroscopy: a powerful tool in biophotonics. Proceedings of SPIE, 2009, , .	0.8	0
823	Plasmonic nanostructures for biophotonic applications. , 2010, , .		0
824	Raman spectroscopic characterization of single cells. , 2010, , .		0
825	Raman Spectroscopic Investigation of Dyes in Spices. , 2010, , .		0
826	On the Way to Reusable SERS-Arrays in (Bio)Analytic. , 2010, , .		0
827	TERS as a Diagnostic Tool for Single Virus Detection. , 2010, , .		0
828	Raman Spectroscopic Characterization of Single Cells. , 2010, , .		0

#	Article	lF	CITATIONS
829	Towards an Analytical Tool Based on Lab-on-a-Chip-SERS (LOC-SERS) for Detection of Drugs in Complex Matrices. , 2010, , .		0
830	Photophysics Of Protochlorophyllide. , 2010, , .		0
831	Micro-Raman Spectroscopic Identification of Pathogenic Microorganisms. , 2010, , .		0
832	Raman Spectroscopic Investigations of the Effect of Cytostatic agents on Breast Cancer Cells. , 2010, , .		0
833	Anisotropic Gold Nanostructures for SERS Application. , 2010, , .		0
834	Utilizing of anisotropic plasmonic arrays for analytics. , 2010, , .		0
835	Easy characterization of SERS substrates of enzymatically produced silver nanoparticles and their applications in the area of bioanalytics. Proceedings of SPIE, 2010, , .	0.8	0
836	Describing Single Proteins Located In Membrane Structures by TERS. , 2010, , .		0
837	Probing Cell Membrane Models by Tip-Enhanced Raman Spectroscopy—TERS. , 2010, , .		0
838	Localization Of The [sup 1]MLCT State Of Novel Ruthenium Polypyridine Complexes Via Resonance Raman Spectroscopy. , 2010, , .		0
839	Monitoring Collagen Structures In Basal Cell Carcinoma Using Multimodal Imaging. , 2010, , .		0
840	SERS measurements in microfluidic devices: a promising way for online-monitoring of lowest agent concentrations. , 2010, , .		0
841	Mikrospektroskopie an lebenden Pilzen und Pflanzen. Nachrichten Aus Der Chemie, 2011, 59, 642-645.	0.0	0
842	Macromol. Chem. Phys. 8/2011. Macromolecular Chemistry and Physics, 2011, 212, .	1.1	0
843	A Raman spectroscopic approach for the cultivation-free identification of microbes. Proceedings of SPIE, 2011, , .	0.8	0
844	Innovative plasmonic nanostructures as biosensor for DNA detection. Biomedizinische Technik, 2012, 57, .	0.9	0
845	Optimal control of coherent anti-Stokes Raman scattering image contrast. Applied Physics Letters, 2012, 100, 261106.	1.5	0
846	Monitoring the morphochemistry of laryngeal carcinoma by multimodal imaging. Proceedings of SPIE, 2012, , .	0.8	0

#	Article	IF	CITATIONS
847	Plasmonic nanostructures on the basis of Ag covered PMMA gratings. Proceedings of SPIE, 2012, , .	0.8	0
848	A Novel Bioassay for the Rapid Detection of E. coli. Biomedizinische Technik, 2012, 57, .	0.9	0
849	Polymer-based isolation of microorganism from complex media. Biomedizinische Technik, 2012, 57, .	0.9	0
850	NIR spectroscopic analyses of chemical osteoarthritic cartilage models. Biomedizinische Technik, 2012, 57, .	0.9	0
851	Bottom-up nanostructured metallic surfaces for SERS detection of low-molecular weight substances. Biomedizinische Technik, 2012, 57, .	0.9	Ο
852	Competition in structural analysis—old wine in new skins. Analytical and Bioanalytical Chemistry, 2013, 405, 2411-2414.	1.9	0
853	Identification of single bacteria using micro Raman spectroscopy. , 2013, , .		0
854	Response to the Comments by L. O. Björn on our Paper "Catalytic Efficiency of a Photoenzyme—An Adaptation to Natural Light Conditions― ChemPhysChem, 2013, 14, 2598-2600.	1.0	0
855	Discrimination of clostridium species using a magnetic bead based hybridization assay. , 2014, , .		0
856	UV resonance Raman sensing of pharmaceutical drugs in hollow fibers. Proceedings of SPIE, 2014, , .	0.8	0
857	Development and application of Raman-probes for biomedical diagnosis and environmental monitoring. Proceedings of SPIE, 2014, , .	0.8	0
858	Interpreting CARS images of tissue within the C-H-stretching region. , 2014, , .		0
859	Aqueous Black Colloids of Reticular Nanostructured Gold. Scientific Reports, 2015, 5, 7899.	1.6	0
860	Hepatic Vitamin A Content Investigation Using Coherent Anti -Stokes Raman Scattering Microscopy. ChemPhysChem, 2016, 17, 4032-4032.	1.0	0
861	2017 – One Decade of Journal of Biophotonics. Journal of Biophotonics, 2017, 10, 9-10.	1.1	0
862	Fully automated all-fiber widely-tunable optical-parametric-oscillator laser system. , 2017, , .		0
863	Raman spectroscopy $\hat{a} \in$ " New tools for clinical diagnosis and therapy. , 2017, , .		0
864	Correction to Slit-Enhanced Chiral- and Broadband Infrared Ultra-Sensing. ACS Photonics, 2018, 5, 4186-4186.	3.2	0

#	Article	IF	CITATIONS
865	The Potential of Linear and Non-Linear Raman Spectroscopy for Bedside and Intraoperative Medical Diagnosis and Therapy. , 2019, , .		0
866	A Raman spectroscopic approach for the cultivation-free identification of microbes. , 2011, , .		0
867	Nonlinear Microspectroscopy for Biomedical Applications. , 2011, , .		0
868	The many facets of Raman spectroscopy. , 2012, , .		0
869	Chip-based Isolation of Pathogens for Subsequent Raman Spectroscopic Identification. , 2013, , .		0
870	Surface-Enhanced Raman Spectroscopy. , 2014, , 1-9.		0
871	Raman Spectroscopy to Solve Unmet Needs in Histopathology. , 2017, , .		0
872	Biophotonics - A Powerful Tool for Non-invasive and Labelfree Cell- and Tissue Screening. , 2017, , .		0
873	Combination of Spontaneous and Coherent Raman Scattering Approaches with Other Spectroscopic Modalities for Molecular Multi-contrast Cancer Diagnosis. , 2020, , 325-358.		0
874	Label-free non-linear imaging through a multimode fiberendoscope. , 2020, , .		0
875	Perspectives of environmental health issues addressed by advanced nanostructures. , 2020, , 525-547.		0
876	Label-Free SERS Assays in Microfluidic Environments. , 2022, , 125-161.		0
877	Multimodal optical coherence tomography, Raman spectroscopy and IR fundus imaging for in vivo retinal imaging. , 2022, , .		0