Michelle A Lowes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9219356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comorbidity screening in hidradenitis suppurativa: Evidence-based recommendations from the US and Canadian Hidradenitis Suppurativa Foundations. Journal of the American Academy of Dermatology, 2022, 86, 1092-1101.	0.6	77
2	Pipeline Therapeutics. , 2022, , 321-331.		0
3	Identification of Biomarkers and Critical Evaluation of Biomarker Validation in Hidradenitis Suppurativa. JAMA Dermatology, 2022, 158, 300.	2.0	33
4	Diagnosing and Managing Hidradenitis Suppurativa in Pediatrics. Pediatric Annals, 2022, 51, e123-e127.	0.3	1
5	Combining medical and surgical management strategies for hidradenitis suppurativa: Need for a treat to target approach. Dermatological Reviews, 2022, 3, 123-125.	0.3	0
6	Therapeutic Drug Monitoring in Patients with Suboptimal Response to Adalimumab for Hidradenitis Suppurativa: A Retrospective Case Series. American Journal of Clinical Dermatology, 2021, 22, 275-283.	3.3	8
7	Pain management in hidradenitis suppurativa and a proposed treatment algorithm. Journal of the American Academy of Dermatology, 2021, 85, 187-199.	0.6	37
8	Diagnosis and management of hidradenitis suppurativa in women. American Journal of Obstetrics and Gynecology, 2021, 224, 54-61.	0.7	10
9	A Systematic Review of Promising Therapeutic Targets in Hidradenitis Suppurativa: A Critical Evaluation of Mechanistic and Clinical Relevance. Journal of Investigative Dermatology, 2021, 141, 316-324.e2.	0.3	44
10	Identifying key components and therapeutic targets of the immune system in hidradenitis suppurativa with an emphasis on neutrophils. British Journal of Dermatology, 2021, 184, 1004-1013.	1.4	15
11	A Comparison of International Management Guidelines for Hidradenitis Suppurativa. Dermatology, 2021, 237, 81-96.	0.9	68
12	Physician perspectives on complementary and alternative medicine in hidradenitis suppurativa. Dermatologic Therapy, 2021, 34, e14851.	0.8	3
13	Elevated Plasma Complement Proteins in Palmoplantar Pustulosis: A Potential Therapeutic Target. Journal of Cutaneous Medicine and Surgery, 2021, 25, 449-450.	0.6	1
14	Expert Knowledge, Attitudes, and Practices in Management of Hidradenitis Suppurativa Pain. JAMA Dermatology, 2021, 157, 464.	2.0	7
15	Provider perspectives on the management of hidradenitis suppurativa in pregnancy – A survey study. International Journal of Women's Dermatology, 2021, 7, 346-348.	1.1	3
16	ls There a Role for Therapeutic Drug Monitoring in Patients with Hidradenitis Suppurativa on Tumor Necrosis Factor-α Inhibitors?. American Journal of Clinical Dermatology, 2021, 22, 139-147.	3.3	6
17	Hidradenitis Suppurativa Specialty Clinics in the USA. Skin Appendage Disorders, 2021, 7, 359-362.	0.5	2
18	Clinical considerations in the management of hidradenitis suppurativa in women. International Journal of Women's Dermatology, 2021, 7, 664-671.	1.1	7

#	Article	IF	CITATIONS
19	Exploring changes in placebo treatment arms in hidradenitis suppurativa randomized clinical trials: A systematic review. Journal of the American Academy of Dermatology, 2020, 82, 45-53.	0.6	13
20	Evaluating patients' unmet needs in hidradenitis suppurativa: Results from the Global Survey Of Impact and Healthcare Needs (VOICE) Project. Journal of the American Academy of Dermatology, 2020, 82, 366-376.	0.6	165
21	Role of the Complement Pathway in Inflammatory Skin Diseases: A Focus on Hidradenitis Suppurativa. Journal of Investigative Dermatology, 2020, 140, 531-536.e1.	0.3	28
22	What causes hidradenitis suppurativa ?—15 years after. Experimental Dermatology, 2020, 29, 1154-1170.	1.4	90
23	Creation of a Registry to Address Knowledge Gaps in Hidradenitis Suppurativa and Pregnancy—Reply. JAMA Dermatology, 2020, 156, 354.	2.0	1
24	Special considerations for women with hidradenitis suppurativa. International Journal of Women's Dermatology, 2020, 6, 85-88.	1.1	17
25	Wound Healing in Hidradenitis Suppurativa. Updates in Clinical Dermatology, 2020, , 177-186.	0.1	1
26	CARD14-Mediated Psoriasis and Pityriasis Rubra Piliaris (PRP). , 2020, , 92-95.		0
27	Hemoglobin as an indicator of disease activity in severe hidradenitis suppurativa. International Journal of Dermatology, 2019, 58, 1090-1091.	0.5	3
28	Hemoglobin Levels and Serum C-Reactive Protein in Patients With Moderate to Severe Hidradenitis Suppurativa. Journal of Cutaneous Medicine and Surgery, 2019, 23, 501-506.	0.6	7
29	Defining lesional, perilesional and unaffected skin in hidradenitis suppurativa: proposed recommendations for clinical trials and translational research studies. British Journal of Dermatology, 2019, 181, 1339-1341.	1.4	28
30	Distribution of Self-reported Hidradenitis Suppurativa Age at Onset. JAMA Dermatology, 2019, 155, 971.	2.0	40
31	North American clinical management guidelines for hidradenitis suppurativa: AÂpublication from the United States and Canadian Hidradenitis Suppurativa Foundations. Journal of the American Academy of Dermatology, 2019, 81, 91-101.	0.6	206
32	African American Patients With Hidradenitis Suppurativa Have Significant Health Care Disparities: A Retrospective Study. Journal of Cutaneous Medicine and Surgery, 2019, 23, 334-336.	0.6	18
33	North American clinical management guidelines for hidradenitis suppurativa: A publication from the United States and Canadian Hidradenitis Suppurativa Foundations. Journal of the American Academy of Dermatology, 2019, 81, 76-90.	0.6	218
34	Are Bacteria Infectious Pathogens in Hidradenitis Suppurativa? Debate at the Symposium for Hidradenitis Suppurativa Advances Meeting, November 2017. Journal of Investigative Dermatology, 2019, 139, 13-16.	0.3	26
35	Quality of life and sexual health in patients with hidradenitis suppurativa. International Journal of Women's Dermatology, 2018, 4, 74-79.	1.1	52
36	Reduction of Inflammatory and Cardiovascular Proteins in the Blood of Patients with Psoriasis: Differential Responses between Tofacitinib and Etanercept after 4 Weeks of Treatment. Journal of Investigative Dermatology, 2018, 138, 273-281.	0.3	40

#	Article	IF	CITATIONS
37	Polyclonal hyperglobulinaemia and elevated acute-phase reactants in hidradenitis suppurativa. British Journal of Dermatology, 2018, 178, e134-e135.	1.4	11
38	Integrating the skin and blood transcriptomes and serum proteome in hidradenitis suppurativa reveals complement dysregulation and a plasma cell signature. PLoS ONE, 2018, 13, e0203672.	1.1	71
39	Inflammation: A Contributor to Depressive Comorbidity in Inflammatory Skin Disease. Skin Pharmacology and Physiology, 2018, 31, 246-251.	1.1	56
40	CARD14-Mediated Psoriasis and Pityriasis Rubra Piliaris (PRP). , 2018, , 1-4.		0
41	A randomized clinical trial in vitamin D–deficient adults comparing replenishment with oral vitamin D3 with narrow-band UV type B light: effects on cholesterol and the transcriptional profiles of skin and blood ,. American Journal of Clinical Nutrition, 2017, 105, 1230-1238.	2.2	27
42	Pain, Psychological Comorbidities, Disability, and Impaired Qualify of Life in Hidradenitis Suppurativa. Current Pain and Headache Reports, 2017, 21, 49.	1.3	77
43	IFNγ-Dependent Tissue-Immune Homeostasis Is Co-opted in the Tumor Microenvironment. Cell, 2017, 170, 127-141.e15.	13.5	140
44	Pathophysiology of hidradenitis suppurativa. Seminars in Cutaneous Medicine and Surgery, 2017, 36, 47-54.	1.6	93
45	Major gaps in understanding and treatment of hidradenitis suppurativa. Seminars in Cutaneous Medicine and Surgery, 2017, 36, 86-92.	1.6	22
46	Patients With Psoriasis and Personalized Trade-offs in Treatment Decisions—Lessons Learned From Focus Groups. JAMA Dermatology, 2016, 152, 720.	2.0	1
47	The Spectrum of Mild to Severe Psoriasis Vulgaris Is Defined by a Common Activation of IL-17 Pathway Genes, butÂwith Key Differences in Immune Regulatory Genes. Journal of Investigative Dermatology, 2016, 136, 2173-2182.	0.3	47
48	lsotretinoin treatment in a patient with known peanut allergy and positive IgE test results for soybean. Annals of Allergy, Asthma and Immunology, 2016, 117, 558-559.	0.5	5
49	The tryptophan metabolism enzyme L-kynureninase is a novel inflammatory factor in psoriasis and other inflammatory diseases. Journal of Allergy and Clinical Immunology, 2016, 137, 1830-1840.	1.5	108
50	Molecular Phenotyping Small (Asian) versus Large (Western) Plaque Psoriasis Shows Common Activation of IL-17 Pathway Genes but Different Regulatory Gene Sets. Journal of Investigative Dermatology, 2016, 136, 161-172.	0.3	51
51	Humanized anti–IFN-γ (HuZAF) in the treatment of psoriasis. Journal of Allergy and Clinical Immunology, 2015, 135, 553-556.e3.	1.5	93
52	Deep Sequencing of the T-cell Receptor Repertoire Demonstrates Polyclonal T-cell Infiltrates in Psoriasis. F1000Research, 2015, 4, 460.	0.8	40
53	Immunology of Psoriasis. Annual Review of Immunology, 2014, 32, 227-255.	9.5	1,242
54	CARD14 Expression in Dermal Endothelial Cells in Psoriasis. PLoS ONE, 2014, 9, e111255.	1.1	52

#	Article	IF	CITATIONS
55	IL-17 and TNF Synergistically Modulate Cytokine Expression while Suppressing Melanogenesis: Potential Relevance to Psoriasis. Journal of Investigative Dermatology, 2013, 133, 2741-2752.	0.3	156
56	The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends in Immunology, 2013, 34, 174-181.	2.9	399
57	Gene Profiling of Narrowband UVB–Induced Skin Injury Defines Cellular and Molecular Innate Immune Responses. Journal of Investigative Dermatology, 2013, 133, 692-701.	0.3	44
58	TREM-1 as a Potential Therapeutic Target in Psoriasis. Journal of Investigative Dermatology, 2013, 133, 1742-1751.	0.3	46
59	A Single Intradermal Injection of IFN-Î ³ Induces an Inflammatory State in Both Non-Lesional Psoriatic and Healthy Skin. Journal of Investigative Dermatology, 2012, 132, 1177-1187.	0.3	94
60	Putting together the psoriasis puzzle: an update on developing targeted therapies. DMM Disease Models and Mechanisms, 2012, 5, 423-433.	1.2	111
61	Post-Therapeutic Relapse of Psoriasis after CD11a Blockade Is Associated with T Cells and Inflammatory Myeloid DCs. PLoS ONE, 2012, 7, e30308.	1.1	29
62	Meta-Analysis Derived (MAD) Transcriptome of Psoriasis Defines the "Core―Pathogenesis of Disease. PLoS ONE, 2012, 7, e44274.	1.1	149
63	PSORS2 Is Due to Mutations in CARD14. American Journal of Human Genetics, 2012, 90, 784-795.	2.6	365
64	Rare and Common Variants in CARD14, Encoding an Epidermal Regulator of NF-kappaB, in Psoriasis. American Journal of Human Genetics, 2012, 90, 796-808.	2.6	306
65	Homeostatic Tissue Responses in Skin Biopsies from NOMID Patients with Constitutive Overproduction of IL-11². PLoS ONE, 2012, 7, e49408.	1.1	36
66	Resolved Psoriasis Lesions Retain Expression of a Subset of Disease-Related Genes. Journal of Investigative Dermatology, 2011, 131, 391-400.	0.3	164
67	Tumor-Associated Macrophages in the Cutaneous SCC Microenvironment Are Heterogeneously Activated. Journal of Investigative Dermatology, 2011, 131, 1322-1330.	0.3	160
68	Tumor-associated macrophages in the cutaneous SCC microenvironment are heterogeneously activated. Journal of Investigative Dermatology, 2011, 131, 1322-30.	0.3	81
69	Personalized medicine in psoriasis: developing a genomic classifier to predict histological response to Alefacept. BMC Dermatology, 2010, 10, 1.	2.1	42
70	A Subpopulation of CD163-Positive Macrophages Is Classically Activated in Psoriasis. Journal of Investigative Dermatology, 2010, 130, 2412-2422.	0.3	249
71	Evaluation of the Psoriasis Transcriptome across Different Studies by Gene Set Enrichment Analysis (GSEA). PLoS ONE, 2010, 5, e10247.	1.1	161
72	Effective Narrow-Band UVB Radiation Therapy Suppresses the IL-23/IL-17 Axis in Normalized Psoriasis Plaques. Journal of Investigative Dermatology, 2010, 130, 2654-2663.	0.3	136

#	Article	IF	CITATIONS
73	Identification of TNF-related apoptosis-inducing ligand and other molecules that distinguish inflammatory from resident dendritic cells in patients with psoriasis. Journal of Allergy and Clinical Immunology, 2010, 125, 1261-1268.e9.	1.5	95
74	Cytokine-Producing Dendritic Cells in the Pathogenesis of Inflammatory Skin Diseases. Journal of Clinical Immunology, 2009, 29, 247-256.	2.0	90
75	Psoriasis Is Characterized by Accumulation of Immunostimulatory and Th1/Th17 Cell-Polarizing Myeloid Dendritic Cells. Journal of Investigative Dermatology, 2009, 129, 79-88.	0.3	374
76	Resident and "Inflammatory―Dendritic Cells in Human Skin. Journal of Investigative Dermatology, 2009, 129, 302-308.	0.3	262
77	Myeloid Dendritic Cells from Human Cutaneous Squamous Cell Carcinoma Are Poor Stimulators of T-Cell Proliferation. Journal of Investigative Dermatology, 2009, 129, 2451-2462.	0.3	79
78	Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes. Journal of Allergy and Clinical Immunology, 2009, 124, 1022-1030.e395.	1.5	273
79	Lack of Functionally Active Melan-A26–35-Specific T Cells in the Blood of HLA-A2+ Vitiligo Patients. Journal of Investigative Dermatology, 2008, 128, 1977-1980.	0.3	6
80	Cellular Genomic Maps Help Dissect Pathology in Human Skin Disease. Journal of Investigative Dermatology, 2008, 128, 606-615.	0.3	31
81	Psoriasis Vulgaris Lesions Contain Discrete Populations of Th1 and Th17 T Cells. Journal of Investigative Dermatology, 2008, 128, 1207-1211.	0.3	910
82	Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. British Journal of Dermatology, 2008, 159, ???-???.	1.4	666
83	Blockade of CD11a by Efalizumab in Psoriasis Patients Induces a Unique State of T-Cell Hyporesponsiveness. Journal of Investigative Dermatology, 2008, 128, 1182-1191.	0.3	54
84	Identification of Cellular Pathways of "Type 1,―Th17 T Cells, and TNF- and Inducible Nitric Oxide Synthase-Producing Dendritic Cells in Autoimmune Inflammation through Pharmacogenomic Study of Cyclosporine A in Psoriasis. Journal of Immunology, 2008, 180, 1913-1920.	0.4	165
85	Low Expression of the IL-23/Th17 Pathway in Atopic Dermatitis Compared to Psoriasis. Journal of Immunology, 2008, 181, 7420-7427.	0.4	300
86	Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. Journal of Experimental Medicine, 2007, 204, 3183-3194.	4.2	604
87	Novel Insight into the Agonistic Mechanism of Alefacept In Vivo: Differentially Expressed Genes May Serve as Biomarkers of Response in Psoriasis Patients. Journal of Immunology, 2007, 178, 7442-7449.	0.4	54
88	Alefacept (anti-CD2) causes a selective reduction in circulating effector memory T cells (Tem) and relative preservation of central memory T cells (Tcm) in psoriasis. Journal of Translational Medicine, 2007, 5, 27.	1.8	60
89	Major differences in inflammatory dendritic cells and their products distinguish atopic dermatitis from psoriasis. Journal of Allergy and Clinical Immunology, 2007, 119, 1210-1217.	1.5	220
90	Eruptive papules during efalizumab (anti-CD11a) therapy of psoriasis vulgaris: a case series. BMC Dermatology, 2007, 7, 2.	2.1	20

#	Article	IF	CITATIONS
91	Human Basal Cell Carcinoma Is Associated with Foxp3+ T cells in a Th2 Dominant Microenvironment. Journal of Investigative Dermatology, 2007, 127, 2391-2398.	0.3	109
92	Pathogenesis and therapy of psoriasis. Nature, 2007, 445, 866-873.	13.7	1,543
93	Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. Journal of Clinical Investigation, 2007, 117, 2517-2525.	3.9	262
94	Prominent Production of IL-20 by CD68+/CD11c+ Myeloid-Derived Cells in Psoriasis: Gene Regulation and Cellular Effects. Journal of Investigative Dermatology, 2006, 126, 1590-1599.	0.3	88
95	Psoriasis vulgaris flare during efalizumab therapy does not preclude future use: a case series. BMC Dermatology, 2005, 5, 9.	2.1	26
96	Increase in TNF-Â and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19057-19062.	3.3	426
97	TNF Inhibition Rapidly Down-Regulates Multiple Proinflammatory Pathways in Psoriasis Plaques. Journal of Immunology, 2005, 175, 2721-2729.	0.4	348
98	Alefacept reduces infiltrating T cells, activated dendritic cells, and inflammatory genes in psoriasis vulgaris. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2075-2080.	3.3	203
99	Current concepts in the immunopathogenesis of psoriasis. Dermatologic Clinics, 2004, 22, 349-369.	1.0	42
100	Efalizumab (anti-CD11a)-induced increase in peripheral blood leukocytes in psoriasis patients is preferentially mediated by altered trafficking of memory CD8+ T cells into lesional skin*1. Clinical Immunology, 2004, 113, 38-46.	1.4	74
101	Cytokine profiles in spontaneously regressing basal cell carcinomas. British Journal of Dermatology, 2000, 143, 91-98.	1.4	84
102	Benign melanocytic proliferative nodule within a congenital naevus. Australasian Journal of Dermatology, 2000, 41, 109-111.	0.4	33
103	Transient reactive papulotranslucent acrokeratoderma associated with cystic fibrosis. Australasian Journal of Dermatology, 2000, 41, 172-174.	0.4	87
104	T Helper 1 Cytokine mRNA Is Increased in Spontaneously Regressing Primary Melanomas. Journal of Investigative Dermatology, 1997, 108, 914-919.	0.3	104