Rajaram Bal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9219073/publications.pdf

Version: 2024-02-01

76 papers 2,898 citations

30 h-index 51 g-index

76 all docs

76 docs citations

76 times ranked 3513 citing authors

#	Article	IF	Citations
1	One-pot transformation of glucose into hydroxymethyl furfural in water over Pd decorated acidic ZrO2. Renewable Energy, 2022, 183, 791-801.	4.3	14
2	Unraveling the Synergistic Participation of Ni–Sn in Nanostructured NiO/SnO ₂ for the Catalytic Transfer Hydrogenolysis of Benzyl Phenyl Ether. Energy & Samp; Fuels, 2022, 36, 4404-4415.	2.5	10
3	TiO ₂ supported cobalt oxide for olefin epoxidation reaction $\hat{a} \in \text{``characterization, catalytic}$ activities and mechanism $\hat{a} \in \text{``using a DFT model. Dalton Transactions, 2022, 51, 10486-10500.}$	1.6	2
4	Direct oxidation of cyclohexane to adipic acid in air over Co3O4@ZrO2 nanostructured catalyst. Molecular Catalysis, 2022, 528, 112473.	1.0	4
5	Morphologically controlled cobalt oxide nanoparticles for efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2021, 582, 322-332.	5.0	51
6	Heterogeneous recyclable copper oxide supported on activated red mud as an efficient and stable catalyst for the one pot hydroxylation of benzene to phenol. Molecular Catalysis, 2021, 499, 111310.	1.0	16
7	Preparation and characterization of a copper oxide nanoparticle-supported red-mud catalyst for liquid phase oxidation of ethyl benzene to acetophenone. New Journal of Chemistry, 2021, 45, 13070-13079.	1.4	7
8	Metal and solvent-dependent activity of spinel-based catalysts for the selective hydrogenation and rearrangement of furfural. Sustainable Energy and Fuels, 2021, 5, 3191-3204.	2.5	12
9	Synthesis of sub-nanometric Cu ₂ O catalysts for Pd-free C–C coupling reactions. Reaction Chemistry and Engineering, 2021, 6, 929-936.	1.9	3
10	Catalytic transformation of ethanol to methane and butene over NiO NPs supported over mesoporous SBA-15. Molecular Catalysis, 2021, 502, 111381.	1.0	6
11	Understanding the Origin of Structure Sensitivity in Nano Crystalline Mixed Cu/Mgâ°'Al Oxides Catalyst for Lowâ€Pressure Methanol Synthesis. ChemCatChem, 2021, 13, 3290-3302.	1.8	8
12	Influence of Indium as a Promoter on the Stability and Selectivity of the Nanocrystalline Cu/CeO ₂ Catalyst for CO ₂ Hydrogenation to Methanol. ACS Applied Materials & amp; Interfaces, 2021, 13, 28201-28213.	4.0	27
13	Pd-Decorated CePO ₄ Catalyst for the One-Pot, Two-Step Cascade Reaction to Transform Biomass-Derived Furanic Aldehydes into Fuel Intermediates. Energy & Energy & 2021, 35, 11366-11381.	2.5	5
14	Combined experimental and computational study to unravel the factors of the Cu/TiO2 catalyst for CO2 hydrogenation to methanol. Journal of CO2 Utilization, 2021, 50, 101576.	3.3	18
15	Selective transfer hydrogenation of biomass derived furanic molecules using cyclohexanol as a hydrogen donor over nanostructured Cu/MgO catalyst. Molecular Catalysis, 2021, 513, 111812.	1.0	8
16	Nickel Nanoparticles Immobilized over Mesoporous SBA-15 for Efficient Carbonylative Coupling Reactions Utilizing CO ₂ : A Spotlight. ACS Applied Materials & Samp; Interfaces, 2021, 13, 40157-40171.	4.0	20
17	Design of highly stable MgO promoted Cu/ZnO catalyst for clean methanol production through selective hydrogenation of CO2. Applied Catalysis A: General, 2021, 623, 118239.	2.2	40
18	In-situ experimental and computational approach to investigate the nature of active site in low-temperature CO-PROX over CuOx-CeO2 catalyst. Applied Catalysis A: General, 2021, 624, 118305.	2.2	20

#	Article	IF	CITATIONS
19	Modulation of Ru and Cu nanoparticle contents over CuAlPO-5 for synergistic enhancement in the selective reduction and oxidation of biomass-derived furan based alcohols and carbonyls. Catalysis Science and Technology, 2021, 11, 4133-4148.	2.1	6
20	Aqueous phase hydrogenolysis of renewable glycerol to 1, 2-propanediol over bimetallic highly stable and efficient Ni-Cu/Al2O3 catalyst. Molecular Catalysis, 2021, 515, 111943.	1.0	5
21	Role of Interfacial Cuâ€lons in Polycrystalline Cuâ€CeO 2 : Inâ€Situ Raman, Inâ€situ DRIFT and DFT Studies for Preferential Oxidation of CO in Presence of Excess H 2 **. ChemistrySelect, 2021, 6, 13051-13059.	0.7	7
22	Graphene oxide supported Pd-Fe nanohybrid as an efficient electrocatalyst for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2020, 45, 18704-18715.	3.8	10
23	Morphology controlled synthesis of 2D heterostructure Ag/WO3 nanocomposites for enhanced photoelectrochemical CO2 reduction performance. Journal of CO2 Utilization, 2020, 41, 101284.	3.3	20
24	Renewable Aromatics from Tree-Borne Oils over Zeolite Catalysts Promoted by Transition Metals. ACS Applied Materials & Samp; Interfaces, 2020, 12, 24756-24766.	4.0	21
25	Synthesis of Ni-Pd decorated spindle-shape CeO2 for catalytic reduction of nitroarene. Catalysis Communications, 2020, 142, 106038.	1.6	8
26	Room temperature selective reduction of nitroarenes to azoxy compounds over Ni-TiO2 catalyst. Molecular Catalysis, 2020, 490, 110943.	1.0	14
27	Preparation of Nanostructured Pdâ€Fe ₂ O ₃ Catalyst for C–C Coupling Reaction. ChemistrySelect, 2019, 4, 10566-10575.	0.7	8
28	Facile synthesis of size-controlled Ag supported on WO3 nanorods and their application as novel and active catalyst in oxidant-free dehydrogenation of benzyl alcohols. Catalysis Communications, 2019, 132, 105804.	1.6	25
29	Development of Highly Efficient and Durable Three-Dimensional Octahedron NiCo ₂ O ₄ Spinel Nanoparticles toward the Selective Oxidation of Styrene. Industrial & Engineering Chemistry Research, 2019, 58, 18168-18177.	1.8	17
30	Fabrication of Au Nanoparticles Supported on One-Dimensional La ₂ O ₃ Nanorods for Selective Esterification of Methacrolein to Methyl Methacrylate with Molecular Oxygen. ACS Sustainable Chemistry and Engineering, 2019, 7, 3982-3994.	3.2	27
31	Low-temperature catalytic oxidation of aniline to azoxybenzene over an Ag/Fe ₂ O ₂ as an oxidant. New Journal of Chemistry, 2019, 43, 8911-8918.	1.4	15
32	Synthesis of Highly Active Pd Nanoparticles Supported Iron Oxide Catalyst for Selective Hydrogenation and Crossâ€Coupling Reactions in Aqueous Medium. ChemistrySelect, 2019, 4, 5019-5032.	0.7	6
33	Surfactantâ€Induced Preparation of Highly Dispersed Niâ€Nanoparticles Supported on Nanocrystalline ZrO ₂ for Chemoselective Reduction of Nitroarenes. ChemistrySelect, 2018, 3, 1129-1141.	0.7	13
34	Hydrogenation of 5-hydroxymethylfurfural to 2,5 dimethylfuran over nickel supported tungsten oxide nanostructured catalyst. Sustainable Energy and Fuels, 2018, 2, 191-198.	2.5	49
35	K-Promoted Pt-Hydrotalcite Catalyst for Production of H ₂ by Aqueous Phase Reforming of Glycerol. ACS Sustainable Chemistry and Engineering, 2018, 6, 2122-2131.	3.2	29
36	Highly selective transfer hydrogenation of $\hat{l}\pm,\hat{l}^2$ -unsaturated carbonyl compounds using Cu-based nanocatalysts. Catalysis Science and Technology, 2017, 7, 2828-2837.	2.1	26

#	Article	IF	Citations
37	Synthesis effects on activity and stability of Pt-CeO2 catalysts for partial oxidation of methane. Molecular Catalysis, 2017, 432, 131-143.	1.0	25
38	Low temperature dry reforming of methane over Pd-CeO2 nanocatalyst. Catalysis Communications, 2017, 92, 19-22.	1.6	76
39	Pt–CeO ₂ nanoporous spheres – an excellent catalyst for partial oxidation of methane: effect of the bimodal pore structure. Catalysis Science and Technology, 2017, 7, 4720-4735.	2.1	23
40	Synthesis and catalytic activity of a Pd doped Ni–MgO catalyst for dry reforming of methane. Journal of Materials Chemistry A, 2017, 5, 15688-15699.	5. 2	72
41	Effect of metal-support interaction on activity and stability of Ni-CeO2 catalyst for partial oxidation of methane. Applied Catalysis B: Environmental, 2017, 202, 473-488.	10.8	180
42	Ni nanocluster on modified CeO ₂ –ZrO ₂ nanoporous composite for tri-reforming of methane. Catalysis Science and Technology, 2016, 6, 7122-7136.	2.1	49
43	Promoting Effect of CeO ₂ and MgO for CO ₂ Reforming of Methane over Ni-ZnO Catalyst. ChemistrySelect, 2016, 1, 3075-3085.	0.7	33
44	Highly nanodispersed Gd-doped Ni/ZSM-5 catalyst for enhanced carbon-resistant dry reforming of methane. Journal of Molecular Catalysis A, 2016, 424, 17-26.	4.8	39
45	Energy efficient methane tri-reforming for synthesis gas production over highly coke resistant nanocrystalline Ni–ZrO2 catalyst. Applied Energy, 2016, 178, 110-125.	5.1	104
46	Synthesis of highly coke resistant Ni nanoparticles supported MgO/ZnO catalyst for reforming of methane with carbon dioxide. Applied Catalysis B: Environmental, 2016, 191, 165-178.	10.8	139
47	Partial oxidation of methane to synthesis gas over Pt nanoparticles supported on nanocrystalline CeO ₂ catalyst. Catalysis Science and Technology, 2016, 6, 4601-4615.	2.1	46
48	Fabrication of Ag/Mn ₃ O ₄ nano-architectures for the one-step selective oxidation of 3-picoline to niacin: a key to vitamin B ₃ production. Catalysis Science and Technology, 2016, 6, 4644-4654.	2.1	18
49	Catalytic oxidation of aromatic amines to azoxy compounds over a Cu–CeO ₂ catalyst using H ₂ O ₂ as an oxidant. RSC Advances, 2016, 6, 22812-22820.	1.7	23
50	Ni/CeO2 catalysts for methane partial oxidation: Synthesis driven structural and catalytic effects. Applied Catalysis B: Environmental, 2016, 189, 233-241.	10.8	141
51	Morphology-controlled synthesis of TiO2 nanostructures for environmental application. Catalysis Communications, 2016, 74, 43-48.	1.6	15
52	Room temperature selective oxidation of aniline to azoxybenzene over a silver supported tungsten oxide nanostructured catalyst. Green Chemistry, 2015, 17, 1867-1876.	4.6	92
53	Defect-Induced Efficient Partial Oxidation of Methane over Nonstoichiometric Ni/CeO ₂ Nanocrystals. Journal of Physical Chemistry C, 2015, 119, 13610-13618.	1.5	57
54	Nanoclusters of Cu(<scp>ii</scp>) supported on nanocrystalline W(<scp>vi</scp>) oxide: a potential catalyst for single-step conversion of cyclohexane to adipic acid. Green Chemistry, 2015, 17, 3490-3499.	4.6	49

#	Article	IF	CITATIONS
55	One-pot preparation of nanocrystalline Ag–WO ₃ catalyst for the selective oxidation of styrene. RSC Advances, 2015, 5, 37610-37616.	1.7	36
56	Synergistic Effect between Ultrasmall Cu(II) Oxide and CuCr ₂ O ₄ Spinel Nanoparticles in Selective Hydroxylation of Benzene to Phenol with Air as Oxidant. ACS Catalysis, 2015, 5, 2850-2858.	5 . 5	81
57	Cetyl alcohol mediated fabrication of forest of Ag/Mn ₃ O ₄ nanowhiskers catalyst for the selective oxidation of styrene with molecular oxygen. RSC Advances, 2015, 5, 89879-89887.	1.7	28
58	Fabrication of Silver–Tungsten Wafer-like Nanoarchitectures for Selective Epoxidation of Alkenes. ACS Sustainable Chemistry and Engineering, 2015, 3, 2823-2830.	3.2	17
59	Chloride promoted room temperature preparation of silver nanoparticles on two dimensional tungsten oxide nanoarchitectures for the catalytic oxidation of tertiary N-compounds to N-oxides. Nanoscale, 2015, 7, 15197-15208.	2.8	18
60	Nanocrystalline Pt-CeO ₂ as an efficient catalyst for a room temperature selective reduction of nitroarenes. Green Chemistry, 2015, 17, 785-790.	4.6	89
61	Synthesis and support composition effects on CH4 partial oxidation over Ni–CeLa oxides. Applied Catalysis B: Environmental, 2015, 164, 135-143.	10.8	54
62	Surfactant Promoted Synthesis of CuCr ₂ O ₄ Spinel Nanoparticles: A Recyclable Catalyst for One-Pot Synthesis of Acetophenone from Ethylbenzene. Industrial & Engineering Chemistry Research, 2014, 53, 20056-20063.	1.8	23
63	Catalytic Oxidation of Aniline to Azoxybenzene Over CuCr ₂ O ₄ Spinel Nanoparticle Catalyst. ACS Sustainable Chemistry and Engineering, 2014, 2, 584-589.	3.2	99
64	Preparation of the CuCr ₂ O ₄ spinel nanoparticles catalyst for selective oxidation of toluene to benzaldehyde. Green Chemistry, 2014, 16, 2500-2508.	4.6	99
65	Pt nanoparticle supported on nanocrystalline CeO ₂ : highly selective catalyst for upgradation of phenolic derivatives present in bio-oil. Journal of Materials Chemistry A, 2014, 2, 18398-18404.	5.2	32
66	Cu nanoclusters supported on nanocrystalline SiO ₂ â€"MnO ₂ : a bifunctional catalyst for the one-step conversion of glycerol to acrylic acid. Chemical Communications, 2014, 50, 9707-9710.	2.2	51
67	Preparation of CeO2 nanoparticles supported on 1-D silica nanostructures for room temperature selective oxidation of styrene. RSC Advances, 2014, 4, 5453.	1.7	27
68	Direct catalytic oxyamination of benzene to aniline over Cu(<scp>ii</scp>) nanoclusters supported on CuCr ₂ O ₄ spinel nanoparticles via simultaneous activation of Câ€"H and Nâ€"H bonds. Chemical Communications, 2014, 50, 13311-13314.	2.2	31
69	Pt nanoparticles with tuneable size supported on nanocrystalline ceria for the low temperature water-gas-shift (WGS) reaction. Journal of Molecular Catalysis A, 2014, 395, 117-123.	4.8	21
70	Fabrication of Three-Dimensional (3D) Raspberry-Like Copper Chromite Spinel Catalyst in a Facile Hydrothermal Route and Its Activity in Selective Hydroxylation of Benzene to Phenol. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14451-14459.	4.0	58
71	Selective oxidation of cyclohexene to adipic acid over silver supported tungsten oxide nanostructured catalysts. Green Chemistry, 2014, 16, 2826.	4.6	78
72	Selective Oxidation of Propylene to Propylene Oxide over Silver-Supported Tungsten Oxide Nanostructure with Molecular Oxygen. ACS Catalysis, 2014, 4, 2169-2174.	5. 5	114

#	Article	IF	CITATION
73	Reforming of methane with CO2 over Ni nanoparticle supported on mesoporous ZSM-5. Catalysis Today, 2012, 198, 209-214.	2.2	47
74	Aqueous phase reforming of glycerol to 1,2-propanediol over Pt-nanoparticles supported on hydrotalcite in the absence of hydrogen. Green Chemistry, 2012, 14, 3107.	4.6	49
75	Room temperature selective oxidation of cyclohexane over Cu-nanoclusters supported on nanocrystalline Cr2O3. Green Chemistry, 2012, 14, 2600.	4.6	56
76	Low-temperature PROX (preferential oxidation) on novel CeO2-supported Cu-cluster catalysts under fuel-cell operating conditions. Chemical Communications, 2007, , 4689.	2.2	32