Quanzi Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9218953/publications.pdf

Version: 2024-02-01

394421 361022 1,767 35 19 35 citations h-index g-index papers 41 41 41 2185 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evaporation-induced crystal self-assembly (EICSA) of salt drops regulated by trace of polyacrylamide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128856.	4.7	7
2	Wall-Confined Spreading Dynamics on the Surface of Surfactant Solution. Journal of Physical Chemistry Letters, 2022, 13, 4315-4320.	4.6	1
3	Control of viscous fingering: From the perspective of energy evolution. Physical Review Fluids, 2021, 6, .	2.5	2
4	Marangoni-driven instability patterns of an N-hexadecane drop triggered by assistant solvent. Physics of Fluids, 2021, 33, 024104.	4.0	4
5	Dilute sodium dodecyl sulfate droplets impact on micropillar-arrayed non-wetting surfaces. Physics of Fluids, 2021, 33, .	4.0	10
6	Formation of Deposition Patterns Induced by the Evaporation of the Restricted Liquid. Langmuir, 2020, 36, 8520-8526.	3.5	14
7	Shape evolution and scaling analysis of soluble cylinders in dissolutive flow. Physics of Fluids, 2020, 32, 102103.	4.0	7
8	Promoting rebound of impinging viscoelastic droplets on heated superhydrophobic surfaces. New Journal of Physics, 2020, 22, 123001.	2.9	14
9	Solute transport and interface evolution in dissolutive wetting. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	8
10	Evolution of the interfacial shape in dissolutive wetting: Coupling of wetting and dissolution. International Journal of Heat and Mass Transfer, 2018, 118, 201-207.	4.8	14
11	Dissolutive flow in nanochannels: transition between plug-like and Poiseuille-like. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	14
12	Topography-induced symmetry transition of droplets on quasi-periodically patterned surfaces. Soft Matter, 2018, 14, 6198-6205.	2.7	11
13	Dynamics of dissolutive wetting: Physical mechanics investigations. Chinese Science Bulletin, 2018, 63, 2985-2993.	0.7	3
14	Dynamics of Dissolutive Wetting: A Molecular Dynamics Study. Langmuir, 2017, 33, 6464-6470.	3.5	21
15	Using graphene to simplify the adsorption of methane on shale in MD simulations. Computational Materials Science, 2017, 133, 99-107.	3.0	97
16	Dynamic polygonal spreading of a droplet on a lyophilic pillar-arrayed surface. Journal of Adhesion Science and Technology, 2016, 30, 2265-2276.	2.6	8
17	Which is the most efficient candidate for the recovery of confined methane: Water, carbon dioxide or nitrogen?. Extreme Mechanics Letters, 2016, 9, 127-138.	4.1	50
18	Microcrack connectivity in rocks: a real-space renormalization group approach for 3D anisotropic bond percolation. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016, 013205.	2.3	6

#	Article	IF	Citations
19	Molecular dynamics simulations of the enhanced recovery of confined methane with carbon dioxide. Physical Chemistry Chemical Physics, 2015, 17, 31887-31893.	2.8	123
20	Statics and dynamics of electrowetting on pillar-arrayed surfaces at the nanoscale. Nanoscale, 2015, 7, 2561-2567.	5.6	51
21	Dynamic spreading on pillar-arrayed surfaces: Viscous resistance versus molecular friction. Physics of Fluids, 2014, 26, .	4.0	60
22	Phase transitions of a water overlayer on charged graphene: from electromelting to electrofreezing. Nanoscale, 2014, 6, 5432.	5.6	35
23	Wetting on flexible hydrophilic pillar-arrays. Scientific Reports, 2013, 3, 1944.	3.3	36
24	Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface. Journal of Fluid Mechanics, 2013, 716, 171-188.	3.4	101
25	Topology-dominated dynamic wetting of the precursor chain in a hydrophilic interior corner. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 310-322.	2.1	39
26	Tuning Structural and Mechanical Properties of Two-Dimensional Molecular Crystals: The Roles of Carbon Side Chains. Nano Letters, 2012, 12, 1229-1234.	9.1	27
27	Hierarchical Self-Assembly of Achiral Amino Acid Derivatives into Dendritic Chiral Nanotwists. Langmuir, 2012, 28, 15410-15417.	3.5	82
28	Capillary wave propagation during the delamination of graphene by the precursor films in electro-elasto-capillarity. Scientific Reports, 2012, 2, 927.	3.3	19
29	Measurement of the Rate of Water Translocation through Carbon Nanotubes. Nano Letters, 2011, 11, 2173-2177.	9.1	282
30	Precursor Film in Dynamic Wetting, Electrowetting, and Electro-Elasto-Capillarity. Physical Review Letters, 2010, 104, 246101.	7.8	191
31	Hydroelectric Voltage Generation Based on Water-Filled Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 6374-6376.	13.7	150
32	A comparative study of Young's modulus of single-walled carbon nanotube by CPMD, MD and first principle simulations. Computational Materials Science, 2009, 46, 621-625.	3.0	84
33	Ab Initio Study of ZnO-Based Gas-Sensing Mechanisms: Surface Reconstruction and Charge Transfer. Journal of Physical Chemistry C, 2009, 113, 6107-6113.	3.1	147
34	Transport properties and induced voltage in the structure of water-filled single-walled boron-nitrogen nanotubes. Biomicrofluidics, 2009, 3, 022411.	2.4	20
35	Growth mechanism and joint structure of ZnO tetrapods. Journal Physics D: Applied Physics, 2008, 41, 102005.	2.8	29