Henriette I Jager

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9217978/publications.pdf

Version: 2024-02-01

75 papers

2,057 citations

22 h-index

304701

42 g-index

78 all docs 78 docs citations

78 times ranked 2559 citing authors

#	Article	IF	CITATIONS
1	Sustainable reservoir operation: can we generate hydropower and preserve ecosystem values?. River Research and Applications, 2008, 24, 340-352.	1.7	209
2	Research in Thermal Biology: Burning Questions for Coldwater Stream Fishes. Reviews in Fisheries Science, 2009, 17, 90-115.	2.1	187
3	Indicators to support environmental sustainability of bioenergy systems. Ecological Indicators, 2011, 11, 1277-1289.	6.3	186
4	A Theoretical Study of River Fragmentation by Dams and its Effects on White Sturgeon Populations. Environmental Biology of Fishes, 2001, 60, 347-361.	1.0	158
5	Spatial design principles for sustainable hydropower development in river basins. Renewable and Sustainable Energy Reviews, 2015, 45, 808-816.	16.4	69
6	Designing Instream Flows to Satisfy Fish and Human Water Needs. Journal of Water Resources Planning and Management - ASCE, 1996, 122, 356-363.	2.6	66
7	Empirical geographic modeling of switchgrass yields in the United States. GCB Bioenergy, 2010, 2, 248-257.	5.6	63
8	Designing Optimal Flow Patterns for Fall Chinook Salmon in a Central Valley, California, River. North American Journal of Fisheries Management, 2003, 23, 1-21.	1.0	45
9	Modelling the linkages between flow management and salmon recruitment in rivers. Ecological Modelling, 1997, 103, 171-191.	2.5	43
10	A framework for predicting impacts on ecosystem services from (sub)organismal responses to chemicals. Environmental Toxicology and Chemistry, 2017, 36, 845-859.	4.3	40
11	Reconnecting Fragmented Sturgeon Populations in North American Rivers. Fisheries, 2016, 41, 140-148.	0.8	38
12	Land use for bioenergy: Synergies and trade-offs between sustainable development goals. Renewable and Sustainable Energy Reviews, 2022, 161, 112409.	16.4	38
13	How Run-of-River Operation Affects Hydropower Generation and Value. Environmental Management, 2007, 40, 1004-1015.	2.7	37
14	Individual variation in life history characteristics can influence extinction risk. Ecological Modelling, 2001, 144, 61-76.	2.5	36
15	Chutes and ladders and other games we play with rivers. I. Simulated effects of upstream passage on white sturgeon. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 165-175.	1.4	36
16	Spatial Uncertainty and Ecological Models. Ecosystems, 2004, 7, 841-847.	3.4	35
17	Influences of nitrogen fertilization and climate regime on the above-ground biomass yields of miscanthus and switchgrass: A meta-analysis. Renewable and Sustainable Energy Reviews, 2019, 108, 303-311.	16.4	31
18	Effects of climatic temperature change on growth, survival, and reproduction of rainbow trout: predictions from a simulation model. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54, 2526-2542.	1.4	28

#	Article	IF	Citations
19	Resilience of terrestrial and aquatic fauna to historical and future wildfire regimes in western North America. Ecology and Evolution, 2021, 11, 12259-12284.	1.9	27
20	Ecological risk assessment in a large riverâ€reservoir: 2. Fish community. Environmental Toxicology and Chemistry, 1999, 18, 589-598.	4.3	26
21	Forecasting changes in water quality in rivers associated with growing biofuels in the Arkansasâ€Whiteâ€Red river drainage, <scp>USA</scp> . GCB Bioenergy, 2015, 7, 774-784.	5.6	24
22	Modeling white sturgeon movement in a reservoir: the effect of water quality and sturgeon density. Ecological Modelling, 2003, 167, 97-114.	2.5	23
23	Life history correlates and extinction risk of capital-breeding fishes. Hydrobiologia, 2008, 602, 15-25.	2.0	23
24	Commonalities in stream connectivity restoration alternatives: an attempt to simplify barrier removal optimization. Ecosphere, 2019, 10, e02596.	2.2	23
25	Predicting impacts of chemicals from organisms to ecosystem service delivery: A case study of endocrine disruptor effects on trout. Science of the Total Environment, 2019, 649, 949-959.	8.0	23
26	Increased nitrogen use efficiency in crop production can provide economic and environmental benefits. Science of the Total Environment, 2021, 758, 143602.	8.0	23
27	Better management practices for environmentally sustainable production of microalgae and algal biofuels. Journal of Cleaner Production, 2021, 289, 125150.	9.3	22
28	Simulated effects of habitat loss and fragmentation on a solitary mustelid predator. Ecological Modelling, 2006, 191, 416-430.	2.5	21
29	Thinking outside the channel: Timing pulse flows to benefit salmon via indirect pathways. Ecological Modelling, 2014, 273, 117-127.	2.5	21
30	Genetic and demographic implications of aquaculture in white sturgeon (Acipenser transmontanus) conservation. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 1733-1745.	1.4	20
31	Spatial uncertainty analysis of population models. Ecological Modelling, 2005, 185, 13-27.	2.5	19
32	Knitting while Australia burns. Nature Climate Change, 2020, 10, 170-170.	18.8	19
33	ECOLOGICAL RISK ASSESSMENT IN A LARGE RIVER–RESERVOIR: 2. FISH COMMUNITY. Environmental Toxicology and Chemistry, 1999, 18, 589.	4.3	19
34	Renewable energy and biological conservation in a changing world. Biological Conservation, 2021, 263, 109354.	4.1	19
35	Organizing Environmental Flow Frameworks to Meet Hydropower Mitigation Needs. Environmental Management, 2016, 58, 365-385.	2.7	18
36	Predicting impacts of chemicals from organisms to ecosystem service delivery: A case study of insecticide impacts on a freshwater lake. Science of the Total Environment, 2019, 682, 426-436.	8.0	17

#	Article	IF	CITATIONS
37	Global Biodiversity Implications of Alternative Electrification Strategies Under the Shared Socioeconomic Pathways. Biological Conservation, 2021, 260, 109234.	4.1	17
38	Cokriging to assess regional stream quality in the Southern Blue Ridge Province. Water Resources Research, 1990, 26, 1401-1412.	4.2	16
39	The confluences of ideas leading to, and the flow of ideas emerging from, individual-based modeling of riverine fishes. Ecological Modelling, 2018, 384, 341-352.	2.5	16
40	Detecting population–environmental interactions with mismatched time series data. Ecology, 2017, 98, 2813-2822.	3.2	15
41	Designing bioenergy landscapes to protect water quality. Biomass and Bioenergy, 2019, 128, 105327.	5.7	15
42	Chutes and ladders and other games we play with rivers. II. Simulated effects of translocation on white sturgeon. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 176-185.	1.4	14
43	Falling Behind: Delayed Growth Explains Lifeâ€History Variation in Snake River Fall Chinook Salmon. Transactions of the American Fisheries Society, 2011, 140, 959-972.	1.4	14
44	Population viability analysis of white sturgeon and other riverine fishes. Environmental Science and Policy, 2000, 3, 483-489.	4.9	13
45	Can upstream biofuel production increase the flow of downstream ecosystem goods and services?. Biomass and Bioenergy, 2018, 114, 125-131.	5.7	13
46	Hydrologic and water quality responses to biomass production in the Tennessee river basin. GCB Bioenergy, 2018, 10, 877-893.	5.6	13
47	A Framework for Developing Management Goals for Species at Risk with Examples from Military Installations in the United States. Environmental Management, 2009, 44, 1163-1179.	2.7	12
48	Upper Midwest., 1991,, 421-466.		11
49	Unnatural landscapes in ecology: generating the spatial distribution of brine spills. Environmetrics, 2005, 16, 687-698.	1.4	10
50	The Elusive Minimum Viable Population Size for White Sturgeon. Transactions of the American Fisheries Society, 2010, 139, 1551-1565.	1.4	10
51	A simulation experiment to investigate food web polarization. Ecological Modelling, 1988, 41, 101-116.	2.5	9
52	Landscape Influences on Headwater Streams on Fort Stewart, Georgia, USA. Environmental Management, 2011, 48, 795-807.	2.7	9
53	A Population Model to Assess Influences on the Viability of the Shortnose Sturgeon Population in the Ogeechee River, Georgia. Transactions of the American Fisheries Society, 2013, 142, 731-746.	1.4	8
54	Avoiding Conflicts between Future Freshwater Algae Production and Water Scarcity in the United States at the Energy-Water Nexus. Water (Switzerland), 2019, 11, 836.	2.7	8

#	Article	IF	CITATIONS
55	Regulation of energy acquisition and allocation to respiration, growth and reproduction: simulation model and example using rainbow trout., 1997,, 103-137.		8
56	Debate: Can Bioenergy Be Produced in a Sustainable Manner That Protects Biodiversity and Avoids the Risk of Invaders?. Bulletin of the Ecological Society of America, 2013, 94, 277-290.	0.2	7
57	Unnatural hypoxic regimes. Ecosphere, 2018, 9, e02408.	2.2	7
58	Perennials in Flood-Prone Areas of Agricultural Landscapes: A Climate Adaptation Strategy. BioScience, 2020, 70, 278-280.	4.9	7
59	Getting lost tracking the carbon footprint of hydropower. Renewable and Sustainable Energy Reviews, 2022, 162, 112408.	16.4	7
60	Will future climate change increase the risk of violating minimum flow and maximum temperature thresholds below dams in the Pacific Northwest?. Climate Risk Management, 2018, 21, 69-84.	3.2	6
61	Growing grasses in unprofitable areas of US Midwest croplands could increase species richness. Biological Conservation, 2021, 261, 109289.	4.1	6
62	Modeling Regional Variation in Riverine Fish Biodiversity in the Arkansas–White–Red River Basin. Transactions of the American Fisheries Society, 2011, 140, 1227-1239.	1.4	5
63	Comment on "Cumulative biophysical impact of small and large hydropower development in Nu River, China―by Kelly M. Kibler and Desiree D. Tullos. Water Resources Research, 2014, 50, 758-759.	4.2	5
64	Risk and resilience in an uncertain world. Frontiers in Ecology and the Environment, 2018, 16, 3-3.	4.0	5
65	Designing landscapes for biomass production and wildlife. Global Ecology and Conservation, 2018, 16, e00490.	2.1	5
66	Life history correlates and extinction risk of capital-breeding fishes. , 2008, , 15-25.		5
67	Shifts in hydropower operation to balance wind and solar will modify effects on aquatic biota. , 2022, 1, 100060.		5
68	A Call for Collaboration among Water Quality and Fisheries Professionals. Fisheries, 2020, 45, 157-162.	0.8	4
69	Ecosystem service benefits to water users from perennial biomass production. Science of the Total Environment, 2022, 834, 155255.	8.0	4
70	Comment: Testing the Independence of Microhabitat Preferences and Flow (Part 2). Transactions of the American Fisheries Society, 1997, 126, 537-540.	1.4	3
71	Visualizing feedstock siting in biomass production: Tradeoffs between economic and water quality objectives. Land Use Policy, 2019, 88, 104201.	5.6	2
72	Stream Biomes of the World. , 2020, , 134-151.		2

#	Article	IF	CITATIONS
73	<i>Quantitative Ecology: Measurement, Models, and Scaling</i> . Second Edition. By David Clayton Schneider. Amsterdam and Boston (Massachusetts): Elsevier (Academic Press). \$109.95. xv + 415 p.; ill.; index. ISBN: 978-0-12-627865-1. 2009 Quarterly Review of Biology, 2012, 87, 56-57.	0.1	O
74	Webster Van Winkle, Jr., Fish Population Modeler. Fisheries, 2018, 43, 294-295.	0.8	0
75	An indicator-based approach to sustainable management of natural resources. , 2021, , 255-280.		0