Cheryl L Ackert-Bicknell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9217956/publications.pdf

Version: 2024-02-01

71 papers

5,935 citations

32 h-index 95218 68 g-index

81 all docs

81 docs citations

81 times ranked 8867 citing authors

#	Article	lF	CITATIONS
1	Circulating levels of IGF-1 directly regulate bone growth and density. Journal of Clinical Investigation, 2002, 110, 771-781.	3.9	640
2	An atlas of genetic influences on osteoporosis in humans and mice. Nature Genetics, 2019, 51, 258-266.	9.4	557
3	Wholeâ€genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature, 2015, 526, 112-117.	13.7	483
4	Circulating levels of IGF-1 directly regulate bone growth and density. Journal of Clinical Investigation, 2002, 110, 771-781.	3.9	469
5	Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nature Genetics, 2017, 49, 1468-1475.	9.4	391
6	Marrow Fat and the Bone Microenvironment: Developmental, Functional, and Pathological Implications. Critical Reviews in Eukaryotic Gene Expression, 2009, 19, 109-124.	0.4	304
7	Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects. American Journal of Human Genetics, 2018, 102, 88-102.	2.6	252
8	A New Standard Genetic Map for the Laboratory Mouse. Genetics, 2009, 182, 1335-1344.	1.2	202
9	Targeting the gut microbiome to treat the osteoarthritis of obesity. JCI Insight, 2018, 3, .	2.3	166
10	Genetic analysis in the Collaborative Cross breeding population. Genome Research, 2011, 21, 1223-1238.	2.4	158
11	A circadian-regulated gene, <i>Nocturnin $\langle i \rangle$, promotes adipogenesis by stimulating PPAR-\hat{I}^3 nuclear translocation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 10508-10513.</i>	3.3	136
12	Phenotypic Dissection of Bone Mineral Density Reveals Skeletal Site Specificity and Facilitates the Identification of Novel Loci in the Genetic Regulation of Bone Mass Attainment. PLoS Genetics, 2014, 10, e1004423.	1.5	134
13	Genome-wide association study of behavioral, physiological and gene expression traits in outbred CFW mice. Nature Genetics, 2016, 48, 919-926.	9.4	119
14	Nitric Oxide Regulates Receptor Activator of Nuclear Factor-ÎB Ligand and Osteoprotegerin Expression in Bone Marrow Stromal Cells. Endocrinology, 2004, 145, 751-759.	1.4	107
15	Congenic mice with low serum IGF-I have increased body fat, reduced bone mineral density, and an altered osteoblast differentiation program. Bone, 2004, 35, 1046-1058.	1.4	101
16	Genetic variation in femur extrinsic strength in 29 different inbred strains of mice is dependent on variations in femur cross-sectional geometry and bone density. Bone, 2005, 36, 111-122.	1.4	100
17	Aging Research Using Mouse Models. Current Protocols in Mouse Biology, 2015, 5, 95-133.	1.2	92
18	How do bisphosphonates affect fracture healing?. Injury, 2016, 47, S65-S68.	0.7	87

#	Article	IF	Citations
19	Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus. Nature Communications, 2017, 8, 121.	5.8	82
20	High-Throughput, Multi-Image Cryohistology of Mineralized Tissues. Journal of Visualized Experiments, 2016, , .	0.2	78
21	Strain-Specific Effects of Rosiglitazone on Bone Mass, Body Composition, and Serum Insulin-Like Growth Factor-I. Endocrinology, 2009, 150, 1330-1340.	1.4	77
22	Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women. Nature Communications, 2021, 12, 654.	5 . 8	75
23	HDL cholesterol and bone mineral density: Is there a genetic link?. Bone, 2012, 50, 525-533.	1.4	71
24	Canonical A-to-I and C-to-U RNA Editing Is Enriched at 3′UTRs and microRNA Target Sites in Multiple Mouse Tissues. PLoS ONE, 2012, 7, e33720.	1.1	71
25	Spontaneous voiding by mice reveals strain-specific lower urinary tract function to be a quantitative genetic trait. American Journal of Physiology - Renal Physiology, 2014, 306, F1296-F1307.	1.3	68
26	Mapping of Craniofacial Traits in Outbred Mice Identifies Major Developmental Genes Involved in Shape Determination. PLoS Genetics, 2015, 11, e1005607.	1.5	67
27	<i>PPARG</i> by Dietary Fat Interaction Influences Bone Mass in Mice and Humans. Journal of Bone and Mineral Research, 2008, 23, 1398-1408.	3.1	56
28	Functional Genomics Complements Quantitative Genetics in Identifying Disease-Gene Associations. PLoS Computational Biology, 2010, 6, e1000991.	1.5	55
29	Mouse BMD quantitative trait loci show improved concordance with human genome-wide association loci when recalculated on a new, common mouse genetic map. Journal of Bone and Mineral Research, 2010, 25, 1808-1820.	3.1	53
30	Genetic Dissection of Mouse Distal Chromosome 1 Reveals Three Linked BMD QTLs With Sex-Dependent Regulation of Bone Phenotypes. Journal of Bone and Mineral Research, 2007, 22, 1187-1196.	3.1	50
31	Novel Genetic Variants Associated With Increased Vertebral Volumetric BMD, Reduced Vertebral Fracture Risk, and Increased Expression of <i>SLC1A3</i> and <i>EPHB2</i> Journal of Bone and Mineral Research, 2016, 31, 2085-2097.	3.1	42
32	Femur Mechanical Properties in the F2 Progeny of an NZB/B1NJ $\tilde{A}-$ RF/J Cross Are Regulated Predominantly by Genetic Loci That Regulate Bone Geometry. Journal of Bone and Mineral Research, 2006, 21, 1256-1266.	3.1	35
33	Accessing Data Resources in the Mouse Phenome Database for Genetic Analysis of Murine Life Span and Health Span. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 170-177.	1.7	32
34	Genetic Increase in Serum Insulin-Like Growth Factor-I (IGF-I) in C3H/HeJ Compared with C57BL/6J Mice Is Associated with Increased Transcription from the IGF-I Exon 2 Promoter. Endocrinology, 2006, 147, 2944-2955.	1.4	30
35	Screening Gene Knockout Mice for Variation in Bone Mass: Analysis by \hat{l} CT and Histomorphometry. Current Osteoporosis Reports, 2018, 16, 77-94.	1.5	28
36	Meta-Analysis of Genomewide Association Studies Reveals Genetic Variants for Hip Bone Geometry. Journal of Bone and Mineral Research, 2019, 34, 1284-1296.	3.1	27

#	Article	IF	Citations
37	Allelic differences in a quantitative trait locus affecting insulin-like growth factor-l impact skeletal acquisition and body composition. Pediatric Nephrology, 2005, 20, 255-260.	0.9	26
38	Nocturnin: a circadian target of Ppargâ€induced adipogenesis. Annals of the New York Academy of Sciences, 2010, 1192, 131-138.	1.8	25
39	HMGB1-mediated restriction of EPO signaling contributes to anemia of inflammation. Blood, 2022, 139, 3181-3193.	0.6	23
40	Mouse genome-wide association and systems genetics identifies Lhfp as a regulator of bone mass. PLoS Genetics, 2019, 15, e1008123.	1.5	22
41	Identification of a Core Module for Bone Mineral Density through the Integration of a Co-expression Network and GWAS Data. Cell Reports, 2020, 32, 108145.	2.9	21
42	Modeling hepatic osteodystrophy in Abcb4 deficient mice. Bone, 2013, 55, 501-511.	1.4	20
43	Fixation stability dictates the differentiation pathway of periosteal progenitor cells in fracture repair. Journal of Orthopaedic Research, 2015, 33, 948-956.	1.2	19
44	Mapping genetic loci that regulate lipid levels in a NZB/B1NJ×RF/J intercross and a combined intercross involving NZB/B1NJ, RF/J, MRL/MpJ, and SJL/J mouse strains. Journal of Lipid Research, 2007, 48, 1724-1734.	2.0	18
45	BMD regulation on mouse distal chromosome 1, candidate genes, and response to ovariectomy or dietary fat. Journal of Bone and Mineral Research, 2011, 26, 88-99.	3.1	18
46	Genetics of aging bone. Mammalian Genome, 2016, 27, 367-380.	1.0	17
47	Chromosomal inversion discovered in C3H/HeJ mice. Genomics, 2006, 87, 311-313.	1.3	16
48	Genetic variation in TRPS1 may regulate hip geometry as well as bone mineral density. Bone, 2012, 50, 1188-1195.	1.4	16
49	Mouse Models and Online Resources for Functional Analysis of Osteoporosis Genome-Wide Association Studies. Frontiers in Endocrinology, 2019, 10, 277.	1.5	16
50	Genetic analysis of osteoblast activity identifies Zbtb40 as a regulator of osteoblast activity and bone mass. PLoS Genetics, 2020, 16, e1008805.	1.5	15
51	Characterization of expression and alternative splicing of the gene cadherin-like and PC esterase domain containing 1 (Cped1). Gene, 2018, 674, 127-133.	1.0	14
52	Impact of the Environment on the Skeleton: Is it Modulated by Genetic Factors?. Current Osteoporosis Reports, 2013, 11, 219-228.	1.5	13
53	The Genetics ofPPARGand the Skeleton. PPAR Research, 2006, 2006, 1-8.	1.1	12
54	Genetic regulation of bone strength: a review of animal model studies. BoneKEy Reports, 2015, 4, 714.	2.7	12

#	Article	IF	Citations
55	A Chromosomal Inversion within a Quantitative Trait Locus Has a Major Effect on Adipogenesis and Osteoblastogenesis. Annals of the New York Academy of Sciences, 2007, 1116, 291-305.	1.8	11
56	A Bioinformatic Approach to Utilize a Patient's Antibody-Secreting Cells against Staphylococcus aureus to Detect Challenging Musculoskeletal Infections. ImmunoHorizons, 2020, 4, 339-351.	0.8	11
57	High-resolution genetic map of X-linked juvenile-type granulosa cell tumor susceptibility genes in mouse. Cancer Research, 2003, 63, 8197-202.	0.4	11
58	Genetic determinants of fibro-osseous lesions in aged inbred mice. Experimental and Molecular Pathology, 2016, 100, 92-100.	0.9	10
59	Passenger Gene Mutations: Unwanted Guests in Genetically Modified Mice. Journal of Bone and Mineral Research, 2016, 31, 270-273.	3.1	8
60	Isolation and Culture of Neonatal Mouse Calvarial Osteoblasts. Methods in Molecular Biology, 2021, 2230, 425-436.	0.4	8
61	A mutagenesis-derived mouse mutant with abnormal retinal vasculature and low bone mineral density. Molecular Vision, 2017, 23, 140-148.	1.1	7
62	Recalculation of 23 mouse HDL QTL datasets improves accuracy and allows for better candidate gene analysis. Journal of Lipid Research, 2013, 54, 984-994.	2.0	6
63	Genetic Dissection of Femoral and Tibial Microarchitecture. JBMR Plus, 2019, 3, e10241.	1.3	6
64	The need for mouse models in osteoporosis genetics research. BoneKEy Reports, 2012, 1, 98.	2.7	4
65	The future of mouse genetics in osteoporosis research. IBMS BoneKEy, 2009, 6, 200-209.	0.1	3
66	Understanding the Transcriptomic Landscape to Drive New Innovations in Musculoskeletal Regenerative Medicine. Current Osteoporosis Reports, 2022, 20, 141-152.	1.5	3
67	Development and Disease of Mouse Muscular and Skeletal Systems. , 2012, , 209-239.		2
68	Genetics of osteoporosis and bone disease (ASBMR 2012). IBMS BoneKEy, 2013, 10, .	0.1	2
69	Inbred Mouse Strains in the Study of Bone Disease. , 2020, , 150-159.		1
70	Genetics of Bone Fat and Energy Regulation. , 2018, , 301-315.		0
71	A computational approach for identification of core modules from a co-expression network and GWAS data. STAR Protocols, 2021, 2, 100768.	0.5	0