
Edita Jurak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9217949/publications.pdf Version: 2024-02-01

Επιτλ Ιιιρλκ

#	Article	lF	CITATIONS
1	Tunable and functional deep eutectic solvents for lignocellulose valorization. Nature Communications, 2021, 12, 5424.	5.8	116
2	Fate of Carbohydrates and Lignin during Composting and Mycelium Growth of Agaricus bisporus on Wheat Straw Based Compost. PLoS ONE, 2015, 10, e0138909.	1.1	71
3	Occurrence and function of enzymes for lignocellulose degradation in commercial Agaricus bisporus cultivation. Applied Microbiology and Biotechnology, 2017, 101, 4363-4369.	1.7	59
4	A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans. Biotechnology for Biofuels, 2018, 11, 74.	6.2	53
5	Uncovering the abilities of <scp><i>A</i></scp> <i>garicus bisporus</i> to degrade plant biomass throughout its life cycle. Environmental Microbiology, 2015, 17, 3098-3109.	1.8	49
6	Carbohydrate utilization and metabolism is highly differentiated in Agaricus bisporus. BMC Genomics, 2013, 14, 663.	1.2	35
7	Biocatalytic Production of Amino Carbohydrates through Oxidoreductase and Transaminase Cascades. ChemSusChem, 2019, 12, 848-857.	3.6	32
8	Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus. Carbohydrate Polymers, 2014, 101, 281-288.	5.1	29
9	Compost Grown Agaricus bisporus Lacks the Ability to Degrade and Consume Highly Substituted Xylan Fragments. PLoS ONE, 2015, 10, e0134169.	1.1	19
10	Highly Efficient Semi-Continuous Extraction and In-Line Purification of High β-O-4 Butanosolv Lignin. Frontiers in Chemistry, 2021, 9, 655983.	1.8	19
11	H2O2 as a candidate bottleneck for MnP activity during cultivation of Agaricus bisporus in compost. AMB Express, 2017, 7, 124.	1.4	17
12	Long chains and crystallinity govern the enzymatic degradability of gelatinized starches from conventional and new sources. Carbohydrate Polymers, 2021, 260, 117801.	5.1	17
13	Polysaccharide utilization loci-driven enzyme discovery reveals BD-FAE: a bifunctional feruloyl and acetyl xylan esterase active on complex natural xylans. Biotechnology for Biofuels, 2021, 14, 127.	6.2	10
14	The physiology of Agaricus bisporus in semi-commercial compost cultivation appears to be highly conserved among unrelated isolates. Fungal Genetics and Biology, 2018, 112, 12-20.	0.9	9
15	GH13 Glycogen branching enzymes can adapt the substrate chain length towards their preferences via α-1,4-transglycosylation. Enzyme and Microbial Technology, 2021, 150, 109882.	1.6	7
16	Accumulation of recalcitrant xylan in mushroom-compost is due to a lack of xylan substituent removing enzyme activities of Agaricus bisporus. Carbohydrate Polymers, 2015, 132, 359-368.	5.1	6
17	The acclimation of carnivorous round-leaved sundew (Drosera rotundifolia L.) to solar radiation. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	6
18	Reliability factor for identification of amylolytic enzyme activity in the optimized starch-iodine assay. Analytical Biochemistry, 2020, 597, 113696.	1.1	6

Edita Jurak

#	Article	IF	CITATIONS
19	Efficient isolation of membrane-associated exopolysaccharides of four commercial bifidobacterial strains. Carbohydrate Polymers, 2022, 278, 118913.	5.1	6
20	The influence of amylose content on the modification of starches by glycogen branching enzymes. Food Chemistry, 2022, 393, 133294.	4.2	6
21	5-Hydroxy-2-Methylfurfural from Sugar Beet Thick Juice: Kinetic and Modeling Studies. ACS Sustainable Chemistry and Engineering, 2021, 9, 2626-2638.	3.2	5
22	Analysis of the substrate specificity of α-L-arabinofuranosidases by DNA sequencer-aided fluorophore-assisted carbohydrate electrophoresis. Applied Microbiology and Biotechnology, 2018, 102, 10091-10102.	1.7	3
23	Production of α-1,3-L-arabinofuranosidase active on substituted xylan does not improve compost degradation by Agaricus bisporus. PLoS ONE, 2018, 13, e0201090.	1.1	3
24	Elucidating Sequence and Structural Determinants of Carbohydrate Esterases for Complete Deacetylation of Substituted Xylans. Molecules, 2022, 27, 2655.	1.7	3