Qijie Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9217634/publications.pdf

Version: 2024-02-01

172457 276875 3,972 42 29 41 h-index citations g-index papers 42 42 42 5923 times ranked all docs docs citations citing authors

#	Article	IF	CITATIONS
1	Flexible and Highly Sensitive Strain Sensors Fabricated by Pencil Drawn for Wearable Monitor. Advanced Functional Materials, 2015, 25, 2395-2401.	14.9	439
2	A Highly Stretchable ZnO@Fiberâ€Based Multifunctional Nanosensor for Strain/Temperature/UV Detection. Advanced Functional Materials, 2016, 26, 3074-3081.	14.9	239
3	High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy, 2015, 11, 719-727.	16.0	237
4	Highâ€Performance, Room Temperature, Ultraâ€Broadband Photodetectors Based on Airâ€Stable PdSe ₂ . Advanced Materials, 2019, 31, e1807609.	21.0	223
5	Defect Engineering of Two-Dimensional Transition-Metal Dichalcogenides: Applications, Challenges, and Opportunities. ACS Nano, 2021, 15, 2165-2181.	14.6	217
6	Band alignment engineering for improved performance and stability of ZnFe2O4 modified CdS/ZnO nanostructured photoanode for PEC water splitting. Nano Energy, 2016, 24, 25-31.	16.0	196
7	Electromagnetic Shielding Hybrid Nanogenerator for Health Monitoring and Protection. Advanced Functional Materials, 2018, 28, 1703801.	14.9	178
8	Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating. Scientific Reports, 2015, 5, 9080.	3.3	165
9	Flexible and printable paper-based strain sensors for wearable and large-area green electronics. Nanoscale, 2016, 8, 13025-13032.	5.6	154
10	Novel Piezoelectric Paperâ€Based Flexible Nanogenerators Composed of BaTiO ₃ Nanoparticles and Bacterial Cellulose. Advanced Science, 2016, 3, 1500257.	11.2	152
11	Recyclable and Green Triboelectric Nanogenerator. Advanced Materials, 2017, 29, 1604961.	21.0	141
12	Green hybrid power system based on triboelectric nanogenerator for wearable/portable electronics. Nano Energy, 2019, 55, 151-163.	16.0	129
13	Au-Embedded ZnO/NiO Hybrid with Excellent Electrochemical Performance as Advanced Electrode Materials for Supercapacitor. ACS Applied Materials & Interfaces, 2015, 7, 2480-2485.	8.0	114
14	Flexible, Cuttable, and Self-Waterproof Bending Strain Sensors Using Microcracked Gold Nanofilms@Paper Substrate. ACS Applied Materials & Diterfaces, 2017, 9, 4151-4158.	8.0	107
15	Service Behavior of Multifunctional Triboelectric Nanogenerators. Advanced Materials, 2017, 29, 1606703.	21.0	106
16	Piezotronic Interface Engineering on ZnO/Au-Based Schottky Junction for Enhanced Photoresponse of a Flexible Self-Powered UV Detector. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14116-14122.	8.0	105
17	Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor electrodes. Journal of Colloid and Interface Science, 2016, 466, 291-296.	9.4	94
18	An Amphiphobic Hydraulic Triboelectric Nanogenerator for a Selfâ€Cleaning and Selfâ€Charging Power System. Advanced Functional Materials, 2018, 28, 1803117.	14.9	94

#	Article	IF	CITATIONS
19	Integrated multi-unit transparent triboelectric nanogenerator harvesting rain power for driving electronics. Nano Energy, 2016, 25, 18-25.	16.0	91
20	Exchange Bias in van der Waals CrCl ₃ /Fe ₃ GeTe ₂ Heterostructures. Nano Letters, 2020, 20, 5030-5035.	9.1	78
21	Functional triboelectric generator as self-powered vibration sensor with contact mode and non-contact mode. Nano Energy, 2015, 14, 209-216.	16.0	76
22	Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nature Communications, 2021, 12, 616.	12.8	69
23	Selfâ€Recovering Triboelectric Nanogenerator as Active Multifunctional Sensors. Advanced Functional Materials, 2015, 25, 6489-6494.	14.9	63
24	The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction. Nano Research, 2016, 9, 372-379.	10.4	60
25	Performance Improvement by Ozone Treatment of 2D PdSe ₂ . ACS Nano, 2020, 14, 5668-5677.	14.6	54
26	Optoelectronic Properties of a van der Waals WS ₂ Monolayer/2D Perovskite Vertical Heterostructure. ACS Applied Materials & Interfaces, 2020, 12, 45235-45242.	8.0	49
27	Oxygen-induced controllable p-type doping in 2D semiconductor transition metal dichalcogenides. Nano Research, 2020, 13, 3439-3444.	10.4	47
28	High-Energy Gain Upconversion in Monolayer Tungsten Disulfide Photodetectors. Nano Letters, 2019, 19, 5595-5603.	9.1	41
29	Multi-unit hydroelectric generator based on contact electrification and its service behavior. Nano Energy, 2015, 16, 329-338.	16.0	39
30	Energy harvesting from shadow-effect. Energy and Environmental Science, 2020, 13, 2404-2413.	30.8	29
31	Diverse Structures and Magnetic Properties in Nonlayered Monolayer Chromium Selenide. Journal of Physical Chemistry Letters, 2021, 12, 7752-7760.	4. 6	28
32	Influence of the carrier concentration on the piezotronic effect in a ZnO/Au Schottky junction. Nanoscale, 2015, 7, 4461-4467.	5.6	27
33	All in One, Selfâ€Powered Bionic Artificial Nerve Based on a Triboelectric Nanogenerator. Advanced Science, 2021, 8, 2004727.	11.2	26
34	Integrated active sensor system for real time vibration monitoring. Scientific Reports, 2015, 5, 16063.	3.3	23
35	Emerging Technologies for Green Energy Conversion and Storage. Advanced Sustainable Systems, 2021, 5, 2000152.	5. 3	17
36	Carbon-Coatings Improve Performance of Li-Ion Battery. Nanomaterials, 2022, 12, 1936.	4.1	16

#	Article	IF	CITATIONS
37	Pentagonal 2D Transition Metal Dichalcogenides: PdSe ₂ and Beyond. Advanced Functional Materials, 2022, 32, .	14.9	16
38	Water-soluble energy harvester as a promising power solution for temporary electronic implants. APL Materials, 2020, 8, .	5.1	13
39	Observation of Anisotropic Magnetoresistance in Layered Nonmagnetic Semiconducting PdSe ₂ . ACS Applied Materials & https://www.acception.com/subs/subs/subs/subs/subs/subs/subs/sub	8.0	9
40	Influence of piezoelectric effect on dissolving behavior and stability of ZnO micro/nanowires in solution. RSC Advances, 2015, 5, 3365-3369.	3.6	8
41	α-Fe2O3/Reduced Graphene Oxide Composites as Cost-Effective Counter Electrode for Dye-Sensitized Solar Cells. Catalysts, 2022, 12, 645.	3.5	3
42	Advanced materials and devices for medical applications. APL Materials, 2021, 9, .	5.1	0