Ian H Mendenhall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9216621/publications.pdf

Version: 2024-02-01

	1.505	430874	330143
53	1,605 citations	18	37
papers	citations	h-index	g-index
56	56	56	3119
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Serological exposure in Bactrian and dromedary camels in Kazakhstan to a MERS or MERSâ€like coronavirus. Transboundary and Emerging Diseases, 2022, 69, .	3.0	2
2	First Records of Seemingly Rare Bats (Mammalia: Chiroptera) in Cambodia, with a Revised Checklist of Species for the Country. Acta Chiropterologica, 2022, 23, .	0.6	0
3	Detection of Tioman Virus in Pteropus vampyrus Near Flores, Indonesia. Viruses, 2021, 13, 563.	3.3	3
4	High prevalence and diversity of Bartonella in small mammals from the biodiverse Western Ghats. PLoS Neglected Tropical Diseases, 2021, 15, e0009178.	3.0	11
5	Habitat impacts the abundance and network structure within tick (Acari: Ixodidae) communities on tropical small mammals. Ticks and Tick-borne Diseases, 2021, 12, 101654.	2.7	7
6	Genetic diversity and expanded host range of astroviruses detected in small mammals in Singapore. One Health, 2021, 12, 100218.	3.4	3
7	Setting the Terms for Zoonotic Diseases: Effective Communication for Research, Conservation, and Public Policy. Viruses, 2021, 13, 1356.	3.3	23
8	Host specificity of Hepatocystis infection in short-nosed fruit bats (Cynopterus brachyotis) in Singapore. International Journal for Parasitology: Parasites and Wildlife, 2021, 15, 35-42.	1.5	0
9	Robust dengue virus infection in bat cells and limited innate immune responses coupled with positive serology from bats in IndoMalaya and Australasia. Cellular and Molecular Life Sciences, 2020, 77, 1607-1622.	5.4	11
10	The temporal RNA virome patterns of a lesser dawn bat (Eonycteris spelaea) colony revealed by deep sequencing. Virus Evolution, 2020, 6, veaa017.	4.9	10
11	Divergent evolutionary trajectories of influenza B viruses underlie their contemporaneous epidemic activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 619-628.	7.1	80
12	Discovery and Genomic Characterization of a 382-Nucleotide Deletion in ORF7b and ORF8 during the Early Evolution of SARS-CoV-2. MBio, 2020, 11, .	4.1	245
13	Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: A case study of bats. PLoS Pathogens, 2020, 16, e1008758.	4.7	127
14	Detection of Recombinant Rousettus Bat Coronavirus GCCDC1 in Lesser Dawn Bats (Eonycteris) Tj ETQq0 0 0 rg	gBT ₃ /9verlo	ock 10 Tf 50 2
15	Ecology of bat flies in Singapore: A study on the diversity, infestation bias and host specificity (Diptera: Nycteribiidae). International Journal for Parasitology: Parasites and Wildlife, 2020, 12, 29-33.	1.5	9
16	Novel Insights for Biosurveillance of Bat-Borne Viruses. Proceedings (mdpi), 2020, 50, .	0.2	0
17	Novel de Novo Genome of Cynopterus brachyotis Reveals Evolutionarily Abrupt Shifts in Gene Family Composition across Fruit Bats. Genome Biology and Evolution, 2020, 12, 259-272.	2.5	12
18	The impact of transfluthrin on the spatial repellency of the primary malaria mosquito vectors in Vietnam: Anopheles dirus and Anopheles minimus. Malaria Journal, 2020, 19, 9.	2.3	15

#	Article	IF	CITATIONS
19	Immunophenotyping monocytes, macrophages and granulocytes in the Pteropodid bat Eonycteris spelaea. Scientific Reports, 2020, 10, 309.	3.3	18
20	ABCB1 protects bat cells from DNA damage induced by genotoxic compounds. Nature Communications, 2019, 10, 2820.	12.8	28
21	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus. PLoS Neglected Tropical Diseases, 2019, 13, e0007783.	3.0	11
22	Filovirus-reactive antibodies in humans and bats in Northeast India imply zoonotic spillover. PLoS Neglected Tropical Diseases, 2019, 13, e0007733.	3.0	30
23	High basal heat-shock protein expression in bats confers resistance to cellular heat/oxidative stress. Cell Stress and Chaperones, 2019, 24, 835-849.	2.9	35
24	Discovery and Characterization of Novel Bat Coronavirus Lineages from Kazakhstan. Viruses, 2019, 11, 356.	3.3	11
25	Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea). Viruses, 2019, 11, 250.	3.3	22
26	Historic DNA reveals Anthropocene threat to a tropical urban fruit bat. Current Biology, 2019, 29, R1299-R1300.	3.9	17
27	Avian influenza viruses in humans: lessons from past outbreaks. British Medical Bulletin, 2019, 132, 81-95.	6.9	85
28	Isolation and Full-Genome Characterization of Nipah Viruses from Bats, Bangladesh. Emerging Infectious Diseases, 2019, 25, 166-170.	4.3	32
29	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus. , 2019, 13, e0007783.		0
30	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus. , 2019, 13, e0007783.		0
31	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus. , 2019, 13, e0007783.		0
32	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus., 2019, 13, e0007783.		0
33	High diversity of medically important gastrointestinal rodentâ€borne helminths in Singapore. Zoonoses and Public Health, 2018, 65, 361-366.	2.2	6
34	Bat-mouse bone marrow chimera: a novel animal model for dissecting the uniqueness of the bat immune system. Scientific Reports, 2018, 8, 4726.	3.3	11
35	Detection and genetic characterization of diverse <i>Bartonella</i> genotypes in the small mammals of Singapore. Zoonoses and Public Health, 2018, 65, e207-e215.	2.2	18
36	Exploring the genome and transcriptome of the cave nectar bat Eonycteris spelaea with PacBio long-read sequencing. GigaScience, 2018, 7, .	6.4	33

#	Article	IF	Citations
37	Parasitism by Bat Flies on an Urban Population of Cynopterus brachyotis in Singapore. Acta Chiropterologica, 2018, 20, 177.	0.6	5
38	Serologic Evidence of Fruit Bat Exposure to Filoviruses, Singapore, 2011–2016. Emerging Infectious Diseases, 2018, 24, 114-117.	4.3	44
39	Influence of age and body condition on astrovirus infection of bats in Singapore: An evolutionary and epidemiological analysis. One Health, 2017, 4, 27-33.	3.4	18
40	Identification of a Lineage D Betacoronavirus in Cave Nectar Bats (<i>Eonycteris spelaea</i>) in Singapore and an Overview of Lineage D Reservoir Ecology in SE Asian Bats. Transboundary and Emerging Diseases, 2017, 64, 1790-1800.	3.0	22
41	Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities. PLoS Neglected Tropical Diseases, 2017, 11, e0005667.	3.0	18
42	Scientific Collaborations: How Do We Measure the Return on Relationships?. Frontiers in Public Health, 2016, 4, 9.	2.7	15
43	Evidence of canine parvovirus transmission to a civet cat (Paradoxurus musangus) in Singapore. One Health, 2016, 2, 122-125.	3.4	11
44	Prevalence of Cryptosporidium and Giardia in the water resources of the Kuang River catchment, Northern Thailand. Science of the Total Environment, 2016, 562, 701-713.	8.0	29
45	Contraction of the type I IFN locus and unusual constitutive expression of <i>IFN-α</i> in bats. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2696-2701.	7.1	272
46	Detection of a novel astrovirus from a black-naped monarch (Hypothymis azurea) in Cambodia. Virology Journal, 2015, 12, 182.	3 . 4	11
47	Ecological Drivers of Virus Evolution: Astrovirus as a Case Study. Journal of Virology, 2015, 89, 6978-6981.	3.4	47
48	Influenza A Virus Migration and Persistence in North American Wild Birds. PLoS Pathogens, 2013, 9, e1003570.	4.7	83
49	Genetic Structure ofCulex erraticusPopulations Across the Americas. Journal of Medical Entomology, 2012, 49, 522-534.	1.8	9
50	Host Preference of the Arbovirus Vector <i>Culex erraticus</i> /i>(Diptera: Culicidae) at Sonso Lake, Cauca Valley Department, Colombia. Journal of Medical Entomology, 2012, 49, 1092-1102.	1.8	20
51	First Record of Culex (Anoedioporpa) restrictor from Colombia. Journal of the American Mosquito Control Association, 2011, 27, 148-148.	0.7	1
52	The impact of West Nile virus on the abundance of selected North American birds. BMC Veterinary Research, 2011, 7, 43.	1.9	20
53	A Look inside the Replication Dynamics of SARS-CoV-2 in Blyth's Horseshoe Bat (<i>Rhinolophus) Tj ETQq1 1</i>	0,784314 3.0	rgBT /Overl