
## Daniel Lincke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9216555/publications.pdf Version: 2024-02-01



DANIEL LINCKE

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3292-3297.                    | 7.1  | 878       |
| 2  | Future response of global coastal wetlands to sea-level rise. Nature, 2018, 561, 231-234.                                                                                                              | 27.8 | 615       |
| 3  | Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st<br>Century. Scientific Reports, 2020, 10, 11629.                                                  | 3.3  | 280       |
| 4  | Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change<br>Model. Global and Planetary Change, 2016, 139, 15-30.                                              | 3.5  | 256       |
| 5  | A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change, 2021, 11, 338-342.                                                                       | 18.8 | 193       |
| 6  | The ability of societies to adapt to twenty-first-century sea-level rise. Nature Climate Change, 2018, 8, 570-578.                                                                                     | 18.8 | 160       |
| 7  | Flood damage costs under the sea level rise with warming of 1.5 °C and 2 °C. Environmental Research<br>Letters, 2018, 13, 074014.                                                                      | 5.2  | 142       |
| 8  | Economically robust protection against 21st century sea-level rise. Global Environmental Change, 2018, 51, 67-73.                                                                                      | 7.8  | 85        |
| 9  | A comparison of two global datasets of extreme sea levels and resulting flood exposure. Earth's Future, 2017, 5, 379-392.                                                                              | 6.3  | 78        |
| 10 | Stabilization of global temperature at 1.5°C and 2.0°C: implications for coastal areas. Philosophical<br>Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160448. | 3.4  | 76        |
| 11 | Quantifying Land and People Exposed to Seaâ€Level Rise with No Mitigation and 1.5°C and 2.0°C Rise in<br>Global Temperatures to Year 2300. Earth's Future, 2018, 6, 583-600.                           | 6.3  | 73        |
| 12 | Clarifying vulnerability definitions and assessments using formalisation. International Journal of<br>Climate Change Strategies and Management, 2013, 5, 54-70.                                        | 2.9  | 71        |
| 13 | Water-level attenuation in global-scale assessments of exposure to coastal flooding: a sensitivity analysis. Natural Hazards and Earth System Sciences, 2019, 19, 973-984.                             | 3.6  | 45        |
| 14 | A Mediterranean coastal database for assessing the impacts of sea-level rise and associated hazards.<br>Scientific Data, 2018, 5, 180044.                                                              | 5.3  | 44        |
| 15 | Coastal Migration due to 21st Century Sea‣evel Rise. Earth's Future, 2021, 9, e2020EF001965.                                                                                                           | 6.3  | 36        |
| 16 | Regionalisation of population growth projections in coastal exposure analysis. Climatic Change, 2018, 151, 413-426.                                                                                    | 3.6  | 35        |
| 17 | Uncertainty and Bias in Global to Regional Scale Assessments of Current and Future Coastal Flood<br>Risk. Earth's Future, 2021, 9, e2020EF001882.                                                      | 6.3  | 35        |
| 18 | Effects of Scale and Input Data on Assessing the Future Impacts of Coastal Flooding: An Application of<br>DIVA for the Emilia-Romagna Coast. Frontiers in Marine Science, 2016, 3, .                   | 2.5  | 29        |

DANIEL LINCKE

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Land raising as a solution to seaâ€level rise: An analysis of coastal flooding on an artificial island in the Maldives. Journal of Flood Risk Management, 2020, 13, e12567.                                   | 3.3 | 29        |
| 20 | Economy-wide effects of coastal flooding due to sea level rise: a multi-model simultaneous treatment of mitigation, adaptation, and residual impacts. Environmental Research Communications, 2020, 2, 015002. | 2.3 | 28        |
| 21 | Global costs of protecting against sea-level rise at 1.5 to 4.0°C. Climatic Change, 2021, 167, 1.                                                                                                             | 3.6 | 24        |
| 22 | Fiscal effects and the potential implications on economic growth of sea-level rise impacts and coastal zone protection. Climatic Change, 2020, 160, 283-302.                                                  | 3.6 | 15        |
| 23 | The effectiveness of setback zones for adapting to sea-level rise in Croatia. Regional Environmental<br>Change, 2020, 20, 1.                                                                                  | 2.9 | 11        |
| 24 | Global Investment Costs for Coastal Defense through the 21 st Century. , 2019, , .                                                                                                                            |     | 11        |
| 25 | Unravelling the Importance of Uncertainties in Global-Scale Coastal Flood Risk Assessments under<br>Sea Level Rise. Water (Switzerland), 2021, 13, 774.                                                       | 2.7 | 10        |
| 26 | From HOT to COOL., 2012,,.                                                                                                                                                                                    |     | 5         |
| 27 | Generic Libraries in C++ with Concepts from High-Level Domain Descriptions in Haskell. Lecture Notes in Computer Science, 2009, , 236-261.                                                                    | 1.3 | 5         |
| 28 | A functional framework for agent-based models of exchange. Applied Mathematics and Computation, 2011, 218, 4025-4040.                                                                                         | 2.2 | 2         |
| 29 | Functional prototypes for generic C++ libraries: a transformational approach based on higher-order, typed signatures. International Journal on Software Tools for Technology Transfer, 2015, 17, 91-105.      | 1.9 | 2         |