Alessandro Pezzella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/921597/publications.pdf

Version: 2024-02-01

136 papers 5,782 citations

38 h-index 70 g-index

148 all docs

148 docs citations

148 times ranked 5053 citing authors

#	Article	IF	CITATIONS
1	Chemical and Structural Diversity in Eumelanins: Unexplored Bioâ€Optoelectronic Materials. Angewandte Chemie - International Edition, 2009, 48, 3914-3921.	13.8	517
2	Melanins and melanogenesis: methods, standards, protocols. Pigment Cell and Melanoma Research, 2013, 26, 616-633.	3.3	365
3	Melanins and melanogenesis: from pigment cells toÂhuman health and technological applications. Pigment Cell and Melanoma Research, 2015, 28, 520-544.	3.3	347
4	Protonic and Electronic Transport in Hydrated Thin Films of the Pigment Eumelanin. Chemistry of Materials, 2015, 27, 436-442.	6.7	158
5	Disentangling Eumelanin "Black Chromophore― Visible Absorption Changes As Signatures of Oxidation State- and Aggregation-Dependent Dynamic Interactions in a Model Water-Soluble 5,6-Dihydroxyindole Polymer. Journal of the American Chemical Society, 2009, 131, 15270-15275.	13.7	129
6	Melanin-based flexible supercapacitors. Journal of Materials Chemistry C, 2016, 4, 9516-9525.	5.5	125
7	Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angewandte Chemie - International Edition, 2020, 59, 11196-11205.	13.8	121
8	Iron-Mediated Generation of the Neurotoxin 6-Hydroxydopamine Quinone by Reaction of Fatty Acid Hydroperoxides with Dopamine:Â A Possible Contributory Mechanism for Neuronal Degeneration in Parkinson's Disease. Journal of Medicinal Chemistry, 1997, 40, 2211-2216.	6.4	118
9	An integrated approach to the structure of Sepia melanin. Evidence for a high proportion of degraded 5,6-dihydroxyindole-2-carboxylic acid units in the pigment backbone. Tetrahedron, 1997, 53, 8281-8286.	1.9	117
10	Eumelanin Buildup on the Nanoscale: Aggregate Growth/Assembly and Visible Absorption Development in Biomimetic 5,6-Dihydroxyindole Polymerization Biomacromolecules, 2012, 13, 2379-2390.	5.4	116
11	Short-Lived Quinonoid Species from 5,6-Dihydroxyindole Dimers en Route to Eumelanin Polymers:Â Integrated Chemical, Pulse Radiolytic, and Quantum Mechanical Investigation. Journal of the American Chemical Society, 2006, 128, 15490-15498.	13.7	104
12	Stem cell-compatible eumelanin biointerface fabricated by chemically controlled solid state polymerization. Materials Horizons, 2015, 2, 212-220.	12.2	97
13	5,6-Dihydroxyindoles and Indole-5,6-diones. Advances in Heterocyclic Chemistry, 2005, 89, 1-63.	1.7	95
14	Generation of the Neurotoxin 6-Hydroxydopamine by Peroxidase/H2O2 Oxidation of Dopamine. Journal of Medicinal Chemistry, 1995, 38, 917-922.	6.4	92
15	5,6-Dihydroxyindole Tetramers with "Anomalous―Interunit Bonding Patterns by Oxidative Coupling of 5,5â€~,6,6â€-Tetrahydroxy-2,7â€-biindolyl:  Emerging Complexities on the Way toward an Improved Model of Eumelanin Buildup. Journal of Organic Chemistry, 2007, 72, 9225-9230.	of3.2	89
16	Dopaquinone redox exchange with dihydroxyindole and dihydroxyindole carboxylic acid. Pigment Cell & Melanoma Research, 2006, 19, 443-450.	3.6	86
17	Superior Photoprotective Motifs and Mechanisms in Eumelanins Uncovered. Journal of the American Chemical Society, 2014, 136, 11626-11635.	13.7	85
18	The First 5,6-Dihydroxyindole Tetramer by Oxidation of 5,5â€~,6,6â€~-Tetrahydroxy- 2,4â€~-biindolyl and an Unexpected Issue of Positional Reactivity en Route to Eumelanin-Related Polymers. Organic Letters, 2007, 9, 1411-1414.	4.6	80

#	Article	IF	CITATIONS
19	Functionality of epidermal melanin pigments: current knowledge on UV-dissipative mechanisms and research perspectives. Physical Chemistry Chemical Physics, 2011, 13, 9119.	2.8	78
20	Role of Solvent, pH, and Molecular Size in Excited-State Deactivation of Key Eumelanin Building Blocks: Implications for Melanin Pigment Photostability. Journal of the American Chemical Society, 2008, 130, 17038-17043.	13.7	74
21	Oxidative degradation of melanins to pyrrole acids: A model study. Tetrahedron, 1995, 51, 5913-5920.	1.9	73
22	Identification of Partially Degraded Oligomers of 5,6-Dihydroxyindole-2-carboxylic Acid inSepia Melanin by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1997, 11, 368-372.	1.5	61
23	New Reaction Pathways of Dopamine under Oxidative Stress Conditions:Â Nonenzymatic Iron-Assisted Conversion to Norepinephrine and the Neurotoxins 6-Hydroxydopamine and 6,7-Dihydroxytetrahydroisoquinoline. Chemical Research in Toxicology, 1999, 12, 1090-1097.	3.3	60
24	Structural Analysis of Synthetic Melanins from 5,6-Dihydroxyindole by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1996, 10, 468-472.	1.5	59
25	Oxidative polymerisation of 5,6-dihydroxyindole-2-carboxylic acid to melanin: A new insight. Tetrahedron, 1996, 52, 7913-7920.	1.9	58
26	Pyrroles and their Benzo Derivatives: Applications. , 2008, , 353-388.		57
27	5,6â€Dihydroxyindole Chemistry: Unexplored Opportunities Beyond Eumelanin. European Journal of Organic Chemistry, 2011, 2011, 5501-5516.	2.4	56
28	An expedient one-pot entry to catecholestrogens and other catechol compounds via IBX-mediated phenolic oxygenation. Tetrahedron Letters, 2005, 46, 3541-3544.	1.4	51
29	New pyrrole acids by oxidative degradation of eumelanins with hydrogen peroxide. Further hints to the mechanism of pigment breakdown. Tetrahedron, 1996, 52, 8775-8780.	1.9	48
30	Atropoisomeric melanin intermediates by oxidation of the melanogenic precursor 5,6-dihydroxyindole-2-carboxylic acid under biomimetic conditions. Tetrahedron, 2002, 58, 3681-3687.	1.9	47
31	Ultrafast Excited State Dynamics of 5,6-Dihydroxyindole, A Key Eumelanin Building Block: Nonradiative Decay Mechanism. Journal of Physical Chemistry B, 2009, 113, 12575-12580.	2.6	45
32	Irreversible evolution of eumelanin redox states detected by an organic electrochemical transistor: en route to bioelectronics and biosensing. Journal of Materials Chemistry B, 2013, 1, 3843.	5.8	45
33	Surface-Functionalization of Nanostructured Cellulose Aerogels by Solid State Eumelanin Coating. Biomacromolecules, 2016, 17, 564-571.	5.4	45
34	Lack of Visible Chromophore Development in the Pulse Radiolysis Oxidation of 5,6-Dihydroxyindole-2-carboxylic Acid Oligomers: DFT Investigation and Implications for Eumelanin Absorption Properties. Journal of Organic Chemistry, 2009, 74, 3727-3734.	3.2	44
35	Melanin and Melanin-Like Hybrid Materials in Regenerative Medicine. Nanomaterials, 2020, 10, 1518.	4.1	44
36	Synthesis of optically active tetrameric melanin intermediates by oxidation of the melanogenic precursor 5,6-dihydroxyindole-2-carboxylic acid under biomimetic conditions. Tetrahedron: Asymmetry, 2003, 14, 1133-1140.	1.8	43

#	Article	IF	CITATIONS
37	Oxidative chemistry of the natural antioxidant hydroxytyrosol: hydrogen peroxide-dependent hydroxylation and hydroxyquinone/o-quinone coupling pathways. Tetrahedron, 2006, 62, 1273-1278.	1.9	41
38	Mild and efficient iodination of aromatic and heterocyclic compounds with the NaClO2/NaI/HCl system. Tetrahedron, 2008, 64, 234-239.	1.9	41
39	Probing the Eumelanin–Silica Interface in Chemically Engineered Bulk Hybrid Nanoparticles for Targeted Subcellular Antioxidant Protection. ACS Applied Materials & 1, 1, 2, 3, 37615-37622.	8.0	41
40	Supplementing π-systems: eumelanin and graphene-like integration towards highly conductive materials for the mammalian cell culture bio-interface. Journal of Materials Chemistry B, 2015, 3, 5070-5079.	5.8	40
41	Structural Effects on the Electronic Absorption Properties of 5,6â€Dihydroxyindole Oligomers: The Potential of an Integrated Experimental and DFT Approach to Model Eumelanin Optical Properties ^{â€} . Photochemistry and Photobiology, 2008, 84, 600-607.	2.5	39
42	Excited-State Proton-Transfer Processes of DHICA Resolved: From Sub-Picoseconds to Nanoseconds. Journal of Physical Chemistry Letters, 2013, 4, 1383-1388.	4.6	37
43	Bioinspired hybrid eumelanin–TiO ₂ antimicrobial nanostructures: the key role of organo–inorganic frameworks in tuning eumelanin's biocide action mechanism through membrane interaction. RSC Advances, 2018, 8, 28275-28283.	3 . 6	37
44	Chemical, Pulse Radiolysis and Density Functional Studies of a New, Labile 5,6-Indolequinone and Its Semiquinone. Journal of Organic Chemistry, 2007, 72, 1595-1603.	3.2	36
45	Bottom-Up Approach to Eumelanin Photoprotection: Emission Dynamics in Parallel Sets of Water-Soluble 5,6-Dihydroxyindole-Based Model Systems. Journal of Physical Chemistry B, 2012, 116, 13151-13158.	2.6	36
46	Titania as a driving agent for DHICA polymerization: a novel strategy for the design of bioinspired antimicrobial nanomaterials. Journal of Materials Chemistry B, 2015, 3, 2808-2815.	5.8	36
47	5,6-Dihydroxyindole-2-carboxylic Acid–TiO ₂ Charge Transfer Complexes in the Radical Polymerization of Melanogenic Precursor(s). Journal of Physical Chemistry C, 2016, 120, 6262-6268.	3.1	36
48	Antimicrobial activity of eumelanin-based hybrids: The role of TiO 2 in modulating the structure and biological performance. Materials Science and Engineering C, 2017, 75, 454-462.	7.3	36
49	Exploring the frontiers of synthetic eumelanin polymers by highâ€resolution matrixâ€nssisted laser/desorption ionization mass spectrometry. Journal of Mass Spectrometry, 2012, 47, 49-53.	1.6	35
50	Evidence of Unprecedented High Electronic Conductivity in Mammalian Pigment Based Eumelanin Thin Films After Thermal Annealing in Vacuum. Frontiers in Chemistry, 2019, 7, 162.	3.6	35
51	In Situ Formation of Dendrites in Eumelanin Thin Films between Gold Electrodes. Advanced Functional Materials, 2013, 23, 5591-5598.	14.9	34
52	Free Radical Coupling of <i>o</i> -Semiquinones Uncovered. Journal of the American Chemical Society, 2013, 135, 12142-12149.	13.7	34
53	UVâ€Dissipation Mechanisms in the Eumelanin Building Block DHICA. ChemPhysChem, 2010, 11, 2424-2431.	2.1	33
54	Towards the development of a novel bioinspired functional material: Synthesis and characterization of hybrid TiO2/DHICA-melanin nanoparticles. Materials Science and Engineering C, 2013, 33, 347-355.	7.3	33

#	Article	IF	Citations
55	Oxidative chemistry of hydroxytyrosol: isolation and characterisation of novel methanooxocinobenzodioxinone derivatives. Tetrahedron Letters, 2003, 44, 8289-8292.	1.4	31
56	An electrochemical study of natural and chemically controlled eumelanin. APL Materials, 2017, 5, 126108.	5.1	31
57	Aqueous photo(electro)catalysis with eumelanin thin films. Materials Horizons, 2018, 5, 984-990.	12.2	31
58	Multifunctional mats by antimicrobial nanoparticles decoration for bioinspired smart wound dressing solutions. Materials Science and Engineering C, 2021, 123, 111954.	7.3	31
59	Silver-nanoparticles as plasmon-resonant enhancers for eumelanin's photoacoustic signal in a self-structured hybrid nanoprobe. Materials Science and Engineering C, 2019, 102, 788-797.	7.3	29
60	Plant Catechols and Their S-Glutathionyl Conjugates as Antinitrosating Agents: Expedient Synthesis and Remarkable Potency of 5-S-Glutathionylpiceatannol. Chemical Research in Toxicology, 2008, 21, 2407-2413.	3 . 3	28
61	Albumin-Modified Melanin-Silica Hybrid Nanoparticles Target Breast Cancer Cells via a SPARC-Dependent Mechanism. Frontiers in Bioengineering and Biotechnology, 2020, 8, 765.	4.1	28
62	A novel fluoride-sensing scaffold by a peculiar acid-promoted trimerization of 5,6-dihydroxyindole. Tetrahedron, 2009, 65, 2032-2036.	1.9	26
63	Tuning the Specificity of the Recombinant Multicomponent Toluene <i>o</i> -Xylene Monooxygenase from Pseudomonas sp. Strain OX1 for the Biosynthesis of Tyrosol from 2-Phenylethanol. Applied and Environmental Microbiology, 2011, 77, 5428-5437.	3.1	26
64	Intermolecular Ï€â€Electron Perturbations Generate Extrinsic Visible Contributions to Eumelanin Black Chromophore in Model Polymers with Interrupted Interring Conjugation. Photochemistry and Photobiology, 2013, 89, 314-318.	2.5	26
65	Sequential Proton-Coupled Electron Transfer Mediates Excited-State Deactivation of a Eumelanin Building Block. Journal of Physical Chemistry Letters, 2017, 8, 1004-1008.	4.6	26
66	Eumelaninâ€"PEDOT:PSS Complementing En Route to Mammalianâ€Pigmentâ€Based Electrodes: Design and Fabrication of an ITOâ€Free Organic Lightâ€Emitting Device. Advanced Electronic Materials, 2017, 3, 1600342.	5.1	26
67	Effect of substrate temperature on MAPLE deposition of synthetic eumelanin films. Applied Physics A: Materials Science and Processing, 2011, 105, 619-627.	2.3	25
68	Heparin conjugated silica nanoparticle synthesis. Materials Science and Engineering C, 2012, 32, 2037-2041.	7.3	25
69	The first entry to 5,6-dihydroxy-3-mercaptoindole, 5-hydroxy-3-mercaptoindole and their 2-carbomethoxy derivatives by a mild thiocyanation/reduction methodology. Tetrahedron Letters, 2007, 48, 3883-3886.	1.4	24
70	Efficient Synthesis of 5,6-Dihydroxyindole Dimers, Key Eumelanin Building Blocks, by a Unified o-Ethynylaniline-Based Strategy for the Construction of 2-Linked Biindolyl Scaffolds. Journal of Organic Chemistry, 2009, 74, 7191-7194.	3.2	24
71	Cyclic Structural Motifs in 5,6-Dihydroxyindole Polymerization Uncovered: Biomimetic Modular Buildup of a Unique Five-Membered Macrocycle. Organic Letters, 2010, 12, 3250-3253.	4.6	24
72	THz spectroscopy on graphene-like materials for bio-compatible devices. Journal of Applied Physics, 2017, 121, .	2.5	24

#	Article	IF	Citations
73	Neuroglobin Modification by Reactive Quinone Species. Chemical Research in Toxicology, 2013, 26, 1821-1831.	3.3	23
74	Room-temperature surface-assisted reactivity of a melanin precursor: silver metal–organic coordination ⟨i⟩versus⟨/i⟩ covalent dimerization on gold. Nanoscale, 2018, 10, 16721-16729.	5.6	23
75	Synthesis, structure and bioactivity of pHEMA/SiO2 hybrids derived through inÂsitu sol–gel process. Journal of Sol-Gel Science and Technology, 2008, 46, 166-175.	2.4	22
76	<i>Inâ€situ</i> solâ€gel synthesis and characterization of bioactive pHEMA/SiO ₂ blend hybrids. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 89B, 369-378.	3.4	22
77	Matrix assisted pulsed laser deposition of melanin thin films. Journal of Applied Physics, 2011, 110, 026105.	2.5	22
78	Photovoltaic properties of PSi impregnated with eumelanin. Nanoscale Research Letters, 2012, 7, 377. Measurement of 1323 and 1487 keV resonances in small math	5.7	22
79	xmins:mmi="http://www.w3.org/1998/Math/Math/ML"> <mmi:mrow><mmi:mmultiscripts><mmi:mi mathvariant="normal">N</mmi:mi><mmi:mprescripts></mmi:mprescripts><mmi:none></mmi:none><mmi:mn>15</mmi:mn></mmi:mmultiscripts><mmi:mo>(</mmi:mo><mmi:mi>α</mmi:mi><mmi:mo>,F<mmi:mprescripts></mmi:mprescripts><mmi:none< td=""><td>നി:നമം < ന</td><td>าป:เช่ะ) ใ³</td></mmi:none<></mmi:mo></mmi:mrow>	നി:ന മം < ന	าป:เ ช ่ ะ) ใ ³
80	Relation between Local Structure, Electric Dipole, and Charge Carrier Dynamics in DHICA Melanin: A Model for Biocompatible Semiconductors. Journal of Physical Chemistry Letters, 2020, 11, 1045-1051.	4.6	22
81	17β-Estradiol nitration by peroxidase/H2O2/NO2â^²: a chemical assessment. Bioorganic and Medicinal Chemistry, 2004, 12, 2927-2936.	3.0	21
82	Oxidative Coupling of $17\hat{1}^2$ -Estradiol:Â Inventory of Oligomer Products and Configuration Assignment of Atropoisomeric C4-Linked Biphenyl-Type Dimers and Trimers. Journal of Organic Chemistry, 2004, 69, 5652-5659.	3.2	21
83	A Reassessment of the Structure of 5,6-Dihydroxyindole-2-carboxylic Acid Melanins by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1996, 10, 204-208.	1.5	20
84	Tyrosinase-Catalyzed Oxidation of $17\hat{l}^2$ -Estradiol: Â Structure Elucidation of the Products Formed beyond Catechol Estrogen Quinones. Chemical Research in Toxicology, 2005, 18, 1413-1419.	3.3	20
85	Eumelanin Coated PLA Electrospun Micro Fibers as Bioinspired Cradle for SH-SY5Y Neuroblastoma Cells Growth and Maturation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 40070-40076.	8.0	20
86	Bioinspired antibacterial PVA/Melanin-TiO2 hybrid nanoparticles: the role of poly-vinyl-alcohol on their self-assembly and biocide activity. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111671.	5.0	20
87	Acid-Promoted Reaction of the Stilbene Antioxidant Resveratrol with Nitrite Ions: Mild Phenolic Oxidation at the 4â€~Hydroxystiryl Sector Triggering Nitration, Dimerization, and Aldehyde-Forming Routes. Journal of Organic Chemistry, 2006, 71, 4246-4254.	3.2	19
88	Eumelanin 3D Architectures: Electrospun PLA Fiber Templating for Mammalian Pigment Microtube Fabrication. Biomacromolecules, 2015, 16, 1667-1670.	5.4	17
89	6,7-Dihydroxy-1,2,3,4-tetrahydroisoquinoline formation by iron mediated dopamine oxidation: a novel route to endogenous neurotoxins under oxidative stress conditions. Tetrahedron Letters, 1999, 40, 2833-2836.	1.4	16
90	On the antioxidant activity of eumelanin biopigments: a quantitative comparison between free radical scavenging and redox properties. Natural Product Research, 2020, 34, 2465-2473.	1.8	16

#	Article	IF	CITATIONS
91	5,6â€Dihydroxyindole Oxidation in Phosphate Buffer/Polyvinyl Alcohol: A New Model System for Studies of Visible Chromophore Development in Synthetic Eumelanin Polymers. Photochemistry and Photobiology, 2010, 86, 533-537.	2.5	14
92	Physical and Chemical Control of Interface Stability in Porous Si–Eumelanin Hybrids. Journal of Physical Chemistry C, 2018, 122, 28405-28415.	3.1	14
93	Titanium based complexes with melanin precursors as a tool for directing melanogenic pathways. Pure and Applied Chemistry, 2019, 91, 1605-1616.	1.9	14
94	Eumelanin Graphene-Like Integration: The Impact on Physical Properties and Electrical Conductivity. Frontiers in Chemistry, 2019, 7, 121.	3.6	14
95	Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angewandte Chemie, 2020, 132, 11292-11301.	2.0	14
96	Ï€-Electron Manipulation of the 5,6-Dihydroxyindole/Quinone System by 3-Alkynylation: Mild Acid-Mediated Entry to (Cross)-Conjugated Scaffolds and Paradigms for Medium-Tunable Chromophores. Journal of Organic Chemistry, 2011, 76, 4457-4466.	3.2	12
97	Glycosylated Eumelanin Building Blocks by Thioglycosylation of 5,6â€Diacetoxyindole with an Expedient Seleniumâ€Based Dynamicâ€Mixture Methodology. European Journal of Organic Chemistry, 2012, 2012, 4333-4338.	2.4	12
98	Identification of a new small bioactive peptide from Lactobacillus gasseri supernatant. Beneficial Microbes, 2017, 8, 133-141.	2.4	12
99	Eumelanin for natureâ€inspired UVâ€absorption enhancement of plastics. Polymer International, 2019, 68, 984-991.	3.1	12
100	Impact of Eumelanin–PEDOT Blending: Increased PEDOT Crystalline Order and Packing–Conductivity Relationship in Ternary PEDOT:PSS:Eumelanin Thin Films. Advanced Electronic Materials, 2019, 5, 1800585.	5.1	12
101	The Toluene o-Xylene Monooxygenase Enzymatic Activity for the Biosynthesis of Aromatic Antioxidants. PLoS ONE, 2015, 10, e0124427.	2.5	12
102	New insight into the oxidative chemistry of noradrenaline: competitive o-quinone cyclisation and chain fission routes leading to an unusual 4-[bis-(1H-5,6-dihydroxyindol-2-yl)methyl]-1,2-dihydroxybenzene derivative. Tetrahedron, 2005, 61, 4075-4080.	1.9	11
103	Melaninâ€Inspired Organic Electronics: Electroluminescence in Asymmetric Triazatruxenes. ChemPlusChem, 2015, 80, 919-927.	2.8	11
104	Eumelanin-Based Organic Bioelectronics: Myth or Reality?. MRS Advances, 2016, 1, 3801-3810.	0.9	11
105	First synthetic entry to the trimer stage of 5,6-dihydroxyindole polymerization: ortho-alkynylaniline-based access to the missing $2,7\hat{a}\in^2:2\hat{a}\in^2,7\hat{a}\in^2\hat{a}\in^2$ -triindole. Organic and Biomolecular Chemistry, 2010, 8, 4243.	2.8	10
106	Oxidative chemistry of 2-nitro and 4-nitroestradiol: Dichotomous behavior of radical intermediates and novel potential routes for oxyfunctionalization and B-ring fission of steroidal scaffolds. Steroids, 2005, 70, 543-550.	1.8	9
107	Practical one-pot conversion of 17β-estradiol to 10β-hydroxy- (p-quinol) and 10β-chloro-17β-hydroxyestra-1,4-dien-3-one. Steroids, 2006, 71, 670-673.	1.8	9
108	Reaction of dihydrolipoic acid with juglone and related naphthoquinones: unmasking of a spirocyclic 1,3-dithiane intermediate en route to naphtho[1,4]dithiepines. Tetrahedron, 2010, 66, 3912-3916.	1.9	9

#	Article	IF	CITATIONS
109	Self-assembly of 5,6-dihydroxyindole-2-carboxylic acid: polymorphism of a eumelanin building block on Au(111). Nanoscale, 2019, 11, 5422-5428.	5.6	9
110	Spontaneous wrinkle emergence in nascent eumelanin thin films. Soft Matter, 2019, 15, 9261-9270.	2.7	9
111	Eumelanin: From Molecular State to Film. Journal of Physical Chemistry C, 2021, 125, 3567-3576.	3.1	9
112	Boosting, probing and switching-off visible light-induced photocurrents in eumelanin-porous silicon hybrids. RSC Advances, 2015, 5, 56704-56710.	3.6	8
113	Anomalous evolution of broadband optical absorption reveals dynamic solid state reorganization during eumelaninÂbuild-up in thin films. Scientific Reports, 2017, 7, 522.	3.3	8
114	The first characterisation of a transient 5,6-indolequinone. Tetrahedron Letters, 1996, 37, 4241-4242.	1.4	7
115	The role of residue Thr249 in modulating the catalytic efficiency and substrate specificity of catechol-2,3-dioxygenase from Pseudomonas stutzeri OX1. FEBS Journal, 2006, 273, 2963-2976.	4.7	7
116	Characterisation of EFV12 a bio-active small peptide produced by the human intestinal isolate Lactobacillus gasseri SF1109. Beneficial Microbes, 2020, 11, 815-824.	2.4	7
117	Formation of novel tetrahydroisoquinoline retinoids by Pictet–Spengler reaction of dopamine and retinaldehyde under conditions of relevance to biological environments. Tetrahedron Letters, 2002, 43, 6719-6721.	1.4	6
118	Trichocyanines: a Red-Hair-Inspired Modular Platform for Dye-Based One-Time-Pad Molecular Cryptography. ChemistryOpen, 2015, 4, 370-377.	1.9	6
119	Eumelanin Precursor 2-Carboxy-5,6-Dihydroxyindole (DHICA) as Doping Factor in Ternary (PEDOT:PSS/Eumelanin) Thin Films for Conductivity Enhancement. Materials, 2020, 13, 2108.	2.9	6
120	14,15N beam from cyanide compounds. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 689, 98-101.	1.6	5
121	En Route to a Chiral Melanin: The Dynamic "From-Imprinted-to-Template―Supramolecular Role of Porphyrin Hetero-Aggregates During the Oxidative Polymerization of L-DOPA. Frontiers in Chemistry, 2020, 8, 616961.	3.6	5
122	Promelanogenic Effects by an Annurca Apple-Based Natural Formulation in Human Primary Melanocytes. Clinical, Cosmetic and Investigational Dermatology, 2021, Volume 14, 291-301.	1.8	4
123	Structural Analysis of Synthetic Melanins from 5,6-Dihydroxyindole by Matrixâ€assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1996, 10, 468-472.	1.5	4
124	New directions in Parkinson's research and treatment. Expert Opinion on Therapeutic Patents, 1998, 8, 1251-1268.	5.0	3
125	Pyrroles and their Benzo Derivatives: Structure., 2008,, 1-43.		3
126	A Reassessment of the Structure of 5,6-Dihydroxyindole-2-carboxylic Acid Melanins by Matrixâ€assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1996, 10, 204-208.	1.5	3

#	Article	IF	CITATIONS
127	Locating the bandgap edges of eumelanin thin films for applications in organic electronics. Journal of Chemical Technology and Biotechnology, 2022, 97, 837-843.	3.2	3
128	The interplay of chemical structure, physical properties, and structural design as a tool to modulate the properties of melanins within mesopores. Scientific Reports, 2022, 12, .	3.3	3
129	Mass Spectrometric Behavior of 5-S-Cysteinyldopa and Structurally Related Phenolic Compounds. Fragmentation Susceptibility of the Alkylthioether Bond Under Electron Impact and Fast Atom Bombardment Conditions. Journal of Mass Spectrometry, 1996, 31, 885-892.	1.6	2
130	Regioselective Phenol or Carbinol Glycosidation of $17\hat{l}^2$ -Estradiol and Derivatives Thereof. Synlett, 2005, 2005, 1848-1852.	1.8	2
131	Eumelanin Coating of Silica Aerogel by Supercritical Carbon Dioxide Deposition of a 5,6-Dihydroxyindole Thin Film. Materials, 2018, 11, 1494.	2.9	1
132	An Expedient One-Pot Entry Catecholestrogens and Other Catechol Compounds via IBX-Mediated Phenolic Oxygenation ChemInform, 2005, 36, no.	0.0	0
133	Preparation and Oxidation Chemistry of the Catechol Estrogens: Relevance to Estrogen-Related Carcinogenesis and Potential for Drug Design. Current Bioactive Compounds, 2006, 2, 445.	0.5	0
134	Atropodiastereoselectivity in solid state BINOL synthesis: Leads from the estradiol platform. Steroids, 2012, 77, 630-634.	1.8	0
135	Generation of Neurotoxins by New Reaction Pathways of Dopamine under Oxidative Stress Conditions: Contributing Etiopathological Factors in Parkinson's Disease. , 2000, , 233-236.		0
136	Pyrroles and Their Benzo Derivatives: Applications. , 2020, , .		0