Bergithe E Oftedal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9215724/publications.pdf

Version: 2024-02-01

516215 377514 1,261 40 16 citations h-index papers

g-index 42 42 42 1368 docs citations times ranked citing authors all docs

34

#	Article	IF	CITATIONS
1	Autoantibodies to Perilipin-1 Define a Subset of Acquired Generalized Lipodystrophy. Diabetes, 2023, 72, 59-70.	0.3	13
2	Extrathymic expression of Aire controls the induction of effective TH17 cell-mediated immune response to Candida albicans. Nature Immunology, 2022, 23, 1098-1108.	7.0	29
3	GWAS for autoimmune Addison's disease identifies multiple risk loci and highlights AIRE in disease susceptibility. Nature Communications, 2021, 12, 959.	5.8	33
4	The natural history of 21-hydroxylase autoantibodies in autoimmune Addison's disease. European Journal of Endocrinology, 2021, 184, 607-615.	1.9	17
5	The chaperonin CCT8 controls proteostasis essential for T cell maturation, selection, and function. Communications Biology, 2021, 4, 681.	2.0	6
6	Transcriptional Changes in Regulatory T Cells From Patients With Autoimmune Polyendocrine Syndrome Type 1 Suggest Functional Impairment of Lipid Metabolism and Gut Homing. Frontiers in Immunology, 2021, $12,722860.$	2.2	3
7	B Cells and Autoantibodies in AIRE Deficiency. Biomedicines, 2021, 9, 1274.	1.4	3
8	Mechanistic dissection of dominant AIRE mutations in mouse models reveals AIRE autoregulation. Journal of Experimental Medicine, $2021, 218, \ldots$	4.2	18
9	The Natural History of APS1. Endocrinology, 2021, , 51-70.	0.1	o
10	The prospects of singleâ€eell analysis in autoimmunity. Scandinavian Journal of Immunology, 2020, 92, e12964.	1.3	2
11	New era of therapy for endocrine autoimmune disorders. Scandinavian Journal of Immunology, 2020, 92, e12961.	1.3	3
12	Coexistence of Congenital Adrenal Hyperplasia and Autoimmune Addison's Disease. Frontiers in Endocrinology, 2019, 10, 648.	1.5	2
13	Identification and characterization of rare toll-like receptor 3 variants in patients with autoimmune Addison's disease. Journal of Translational Autoimmunity, 2019, 1, 100005.	2.0	5
14	Aire Mutations and Autoimmune Diseases. , 2019, , 191-214.		10
15	21-hydroxylase autoantibodies are more prevalent in Turner syndrome but without an association to the autoimmune polyendocrine syndrome type I. Clinical and Experimental Immunology, 2019, 195, 364-368.	1.1	10
16	The Natural History of APS1. Endocrinology, 2019, , 1-21.	0.1	0
17	Oral microbiota in autoimmune polyendocrine syndrome type 1. Journal of Oral Microbiology, 2018, 10, 1442986.	1.2	12
18	T cell receptor assessment in autoimmune disease requires access to the most adjacent immunologically active organ. Journal of Autoimmunity, 2017, 81, 24-33.	3.0	10

#	Article	IF	CITATIONS
19	Expanding the Phenotypic and Genotypic Landscape of Autoimmune Polyendocrine Syndrome Type 1. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3546-3556.	1.8	89
20	Impaired salivary gland activity in patients with autoimmune polyendocrine syndrome type I. Autoimmunity, 2017, 50, 211-222.	1.2	13
21	Altered Immune Activation and IL-23 Signaling in Response to Candida albicans in Autoimmune Polyendocrine Syndrome Type 1. Frontiers in Immunology, 2017, 8, 1074.	2.2	12
22	A Variant in the <i>BACH2</i> Gene Is Associated With Susceptibility to Autoimmune Addison's Disease in Humans. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3865-3869.	1.8	18
23	AIRE-mutations and autoimmune disease. Current Opinion in Immunology, 2016, 43, 8-15.	2.4	121
24	A Longitudinal Follow-up of Autoimmune Polyendocrine Syndrome Type 1. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2975-2983.	1.8	112
25	Antibodies against NALP5 and it's role in hypoparathyroidism in autoimmune polyglandular syndrome type 1. Problemy Endokrinologii, 2016, 62, 25-30.	0.2	0
26	8q13.1-q13.2 Deletion Associated With Inferior Cerebellar Vermian Hypoplasia and Digital Anomalies: A New Syndrome?. Pediatric Neurology, 2015, 52, 230-234.e1.	1.0	3
27	Dominant Mutations in the Autoimmune Regulator AIRE Are Associated with Common Organ-Specific Autoimmune Diseases. Immunity, 2015, 42, 1185-1196.	6.6	246
28	Revealing Missing Human Protein Isoforms Based on Ab Initio Prediction, RNA-seq and Proteomics. Scientific Reports, 2015, 5, 10940.	1.6	51
29	Clinical and Serologic Parallels to APS-I in Patients with Thymomas and Autoantigen Transcripts in Their Tumors. Journal of Immunology, 2014, 193, 3880-3890.	0.4	46
30	A novel cell-based assay for measuring neutralizing autoantibodies against type I interferons in patients with autoimmune polyendocrine syndrome type 1. Clinical Immunology, 2014, 153, 220-227.	1.4	16
31	<i>ARMC5</i> Mutations Are Common in Familial Bilateral Macronodular Adrenal Hyperplasia. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1784-E1792.	1.8	96
32	Anti-Cytokine Autoantibodies Preceding Onset of Autoimmune Polyendocrine Syndrome Type I Features in Early Childhood. Journal of Clinical Immunology, 2013, 33, 1341-1348.	2.0	63
33	Radioligand-Binding Assay Reveals Distinct Autoantibody Preferences for Type I Interferons in APS I and Myasthenia Gravis Subgroups. Journal of Clinical Immunology, 2012, 32, 230-237.	2.0	21
34	Measuring Autoantibodies against ILâ€17F and ILâ€22 in Autoimmune Polyendocrine Syndrome Type I by Radioligand Binding Assay Using Fusion Proteins. Scandinavian Journal of Immunology, 2011, 74, 327-333.	1.3	20
35	Flow Cytometry Study of Blood Cell Subtypes Reflects Autoimmune and Inflammatory Processes in Autoimmune Polyendocrine Syndrome Type I. Scandinavian Journal of Immunology, 2010, 71, 459-467.	1.3	41
36	AIRE variations in Addison's disease and autoimmune polyendocrine syndromes (APS): partial gene deletions contribute to APS I. Genes and Immunity, 2008, 9, 130-136.	2.2	36

#	Article	IF	CITATIONS
37	Radioimmunoassay for autoantibodies against interferon omega; its use in the diagnosis of autoimmune polyendocrine syndrome type I. Clinical Immunology, 2008, 129, 163-169.	1.4	75
38	Ligand-Dependent Protein Interactions of the Estrogen Receptors Using the Yeast Two-Hybrid System. Annals of the New York Academy of Sciences, 2005, 1040, 420-425.	1.8	5
39	A novel cell-based assay for measuring neutralizing autoantibodies against type I interferons in patients with autoimmune polyendocrine syndrome type $1\dots$ Frontiers in Immunology, $0,4,\dots$	2.2	O
40	21-hydroxylase and interferon omega autoantibodies in Turner syndrome. Endocrine Abstracts, 0, , .	0.0	0