Jessica A Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9215672/publications.pdf

Version: 2024-02-01

257450 477307 29 1,820 24 29 citations g-index h-index papers 33 33 33 1982 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cytochrome OmcS Is Not Essential for Extracellular Electron Transport via Conductive Pili in Geobacter sulfurreducens Strain KN400. Applied and Environmental Microbiology, 2022, 88, AEM0162221.	3.1	5
2	Electron transfer mediator PCN secreted by aerobic marine Pseudomonas aeruginosa accelerates microbiologically influenced corrosion of TC4 titanium alloy. Journal of Materials Science and Technology, 2021, 79, 101-108.	10.7	40
3	Microbial corrosion of metals: The corrosion microbiome. Advances in Microbial Physiology, 2021, 78, 317-390.	2.4	58
4	High efficiency in-situ biogas upgrading in a bioelectrochemical system with low energy input. Water Research, 2021, 197, 117055.	11.3	40
5	Extracellular Electron Exchange Capabilities of <i>Desulfovibrio ferrophilus</i> and <i>Desulfopila corrodens</i> . Environmental Science & Environment	10.0	50
6	Efficient nitrous oxide recovery from incineration leachate by a nosZ-deficient strain of Pseudomonas aeruginosa. Bioresource Technology, 2020, 297, 122371.	9.6	7
7	Carbon cloth enhances treatment of high-strength brewery wastewater in anaerobic dynamic membrane bioreactors. Bioresource Technology, 2020, 298, 122547.	9.6	43
8	Enhancement of Bioelectrochemical CO ₂ Reduction with a Carbon Brush Electrode via Direct Electron Transfer. ACS Sustainable Chemistry and Engineering, 2020, 8, 11368-11375.	6.7	38
9	Magnetite enhances anaerobic digestion of high salinity organic wastewater. Environmental Research, 2020, 189, 109884.	7.5	40
10	A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms. Journal of Materials Science and Technology, 2020, 46, 201-210.	10.7	108
11	A Membrane-Bound Cytochrome Enables <i>Methanosarcina acetivorans</i> To Conserve Energy from Extracellular Electron Transfer. MBio, 2019, 10, .	4.1	76
12	Characterization of the genome from <i>Geobacter anodireducens</i> , a strain with enhanced current production in bioelectrochemical systems. RSC Advances, 2019, 9, 25890-25899.	3.6	17
13	Enhancing biotreatment of incineration leachate by applying an electric potential in a partial nitritation-Anammox system. Bioresource Technology, 2019, 285, 121311.	9.6	24
14	Identification of parameters needed for optimal anaerobic co-digestion of chicken manure and corn stover. RSC Advances, 2019, 9, 29609-29618.	3.6	10
15	Nitrogen cycling during wastewater treatment. Advances in Applied Microbiology, 2019, 106, 113-192.	2.4	95
16	The Low Conductivity of Geobacter uraniireducens Pili Suggests a Diversity of Extracellular Electron Transfer Mechanisms in the Genus Geobacter. Frontiers in Microbiology, 2016, 07, 980.	3.5	84
17	Mechanisms Involved in Fe(III) Respiration by the Hyperthermophilic Archaeon Ferroglobus placidus. Applied and Environmental Microbiology, 2015, 81, 2735-2744.	3.1	41
18	Syntrophic growth via quinone-mediated interspecies electron transfer. Frontiers in Microbiology, 2015, 6, 121.	3.5	89

#	Article	IF	CITATIONS
19	Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens. Frontiers in Microbiology, 2014, 5, 245.	3.5	26
20	Anaerobic degradation of aromatic amino acids by the hyperthermophilic archaeon Ferroglobus placidus. Microbiology (United Kingdom), 2014, 160, 2694-2709.	1.8	32
21	Going Wireless: Fe(III) Oxide Reduction without Pili by Geobacter sulfurreducens Strain JS-1. Applied and Environmental Microbiology, 2014, 80, 4331-4340.	3.1	84
22	Anaerobic Benzene Oxidation via Phenol in Geobacter metallireducens. Applied and Environmental Microbiology, 2013, 79, 7800-7806.	3.1	99
23	Aromatic Amino Acids Required for Pili Conductivity and Long-Range Extracellular Electron Transport in Geobacter sulfurreducens. MBio, 2013, 4, e00105-13.	4.1	148
24	Characterization and transcription of arsenic respiration and resistance genes during <i>in situ</i> uranium bioremediation. ISME Journal, 2013, 7, 370-383.	9.8	80
25	Outer Cell Surface Components Essential for Fe(III) Oxide Reduction by Geobacter metallireducens. Applied and Environmental Microbiology, 2013, 79, 901-907.	3.1	100
26	Aromatic Amino Acids Required for Pili Conductivity and Long-Range Extracellular Electron Transport in Geobacter sulfurreducens. MBio, 2013, 4, .	4.1	179
27	Molecular Analysis of the <i>In Situ</i> Growth Rates of Subsurface Geobacter Species. Applied and Environmental Microbiology, 2013, 79, 1646-1653.	3.1	35
28	Genome-scale analysis of anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon <i>Ferroglobus placidus</i> . ISME Journal, 2012, 6, 146-157.	9.8	63
29	Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus. Applied and Environmental Microbiology, 2011, 77, 5926-5933.	3.1	100