
## **Guangliang Liu**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9215421/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Decreased bioavailability of both inorganic mercury and methylmercury in anaerobic sediments by sorption on iron sulfide nanoparticles. Journal of Hazardous Materials, 2022, 424, 127399.                                                 | 6.5 | 14        |
| 2  | Understanding foliar accumulation of atmospheric Hg in terrestrial vegetation: Progress and challenges. Critical Reviews in Environmental Science and Technology, 2022, 52, 4331-4352.                                                     | 6.6 | 19        |
| 3  | Effect of Enterohepatic Circulation on the Accumulation of Per- and Polyfluoroalkyl Substances:<br>Evidence from Experimental and Computational Studies. Environmental Science & Technology,<br>2022, 56, 3214-3224.                       | 4.6 | 35        |
| 4  | Possible pathways for mercury methylation in oxic marine waters. Critical Reviews in Environmental<br>Science and Technology, 2022, 52, 3997-4015.                                                                                         | 6.6 | 21        |
| 5  | Challenges for utilization and management of crop straw from Cdâ€contaminated soil. Soil Use and Management, 2022, 38, 1337-1339.                                                                                                          | 2.6 | 6         |
| 6  | Binding characteristics of Hg(II) with extracellular polymeric substances: implications for Hg(II) reactivity within periphyton. Environmental Science and Pollution Research, 2022, , 1.                                                  | 2.7 | 1         |
| 7  | Particle-Bound Hg(II) is Available for Microbial Uptake as Revealed by a Whole-Cell Biosensor.<br>Environmental Science & Technology, 2022, 56, 6754-6764.                                                                                 | 4.6 | 8         |
| 8  | Loss and Increase of the Electron Exchange Capacity of Natural Organic Matter during Its Reduction<br>and Reoxidation: The Role of Quinone and Nonquinone Moieties. Environmental Science &<br>Technology, 2022, 56, 6744-6753.            | 4.6 | 30        |
| 9  | Chromatographic framework for coffee ring effect-driven separation of small molecules in surface enhanced Raman spectroscopy analysis. Talanta, 2022, 250, 123688.                                                                         | 2.9 | 2         |
| 10 | Periphyton as an important source of methylmercury in Everglades water and food web. Journal of<br>Hazardous Materials, 2021, 410, 124551.                                                                                                 | 6.5 | 12        |
| 11 | Enriched isotope tracing to reveal the fractionation and lability of legacy and newly introduced cadmium under different amendments. Journal of Hazardous Materials, 2021, 403, 123975.                                                    | 6.5 | 11        |
| 12 | Dark Reduction of Mercury by Microalgae-Associated Aerobic Bacteria in Marine Environments.<br>Environmental Science & Technology, 2021, 55, 14258-14268.                                                                                  | 4.6 | 13        |
| 13 | Aging and phytoavailability of newly introduced and legacy cadmium in paddy soil and their<br>bioaccessibility in rice grain distinguished by enriched isotope tracing. Journal of Hazardous<br>Materials, 2021, 417, 125998.              | 6.5 | 22        |
| 14 | Gaseous Elemental Mercury [Hg(0)] Oxidation in Poplar Leaves through a Two-Step Single-Electron<br>Transfer Process. Environmental Science and Technology Letters, 2021, 8, 1098-1103.                                                     | 3.9 | 8         |
| 15 | Transformation and uptake of silver nanoparticles and silver ions in rice plant ( <i>Oryza sativa</i> L.):<br>the effect of iron plaque and dissolved iron. Environmental Science: Nano, 2020, 7, 599-609.                                 | 2.2 | 19        |
| 16 | Occurrence and leaching of silver in municipal sewage sludge in China. Ecotoxicology and Environmental Safety, 2020, 189, 109929.                                                                                                          | 2.9 | 5         |
| 17 | Monitoring AuNP Dynamics in the Blood of a Single Mouse Using Single Particle Inductively Coupled<br>Plasma Mass Spectrometry with an Ultralow-Volume High-Efficiency Introduction System. Analytical<br>Chemistry, 2020, 92, 14872-14877. | 3.2 | 9         |
| 18 | Occurrence of Mercurous [Hg(I)] Species in Environmental Solid Matrices as Probed by Mild<br>2-Mercaptoethanol Extraction and HPLC-ICP-MS Analysis. Environmental Science and Technology<br>Letters, 2020, 7, 482-488.                     | 3.9 | 15        |

GUANGLIANG LIU

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Perfluorooctanesulfonate Induces Hepatomegaly and Lipoatrophy in Mice through<br>Phosphoenolpyruvate Carboxykinase-Mediated Glyceroneogenesis Inhibition. Environmental Science<br>and Technology Letters, 2020, 7, 185-190. | 3.9 | 5         |
| 20 | Speciation of thioarsenicals through application of coffee ring effect on gold nanofilm and surface-enhanced Raman spectroscopy. Analytica Chimica Acta, 2020, 1106, 88-95.                                                  | 2.6 | 13        |
| 21 | Arsenic Speciation on Silver Nanofilms by Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2019, 91, 8280-8288.                                                                                                    | 3.2 | 41        |
| 22 | Screening of Potential PFOS Alternatives To Decrease Liver Bioaccumulation: Experimental and Computational Approaches. Environmental Science & amp; Technology, 2019, 53, 2811-2819.                                         | 4.6 | 49        |
| 23 | Tracing the Uptake, Transport, and Fate of Mercury in Sawgrass ( <i>Cladium jamaicense</i> ) in the<br>Florida Everglades Using a Multi-isotope Technique. Environmental Science & Technology, 2018, 52,<br>3384-3391.       | 4.6 | 34        |
| 24 | Thiolation in arsenic metabolism: a chemical perspective. Metallomics, 2018, 10, 1368-1382.                                                                                                                                  | 1.0 | 30        |
| 25 | Geochemical modeling of mercury speciation in surface water and implications on mercury cycling in the everglades wetland. Science of the Total Environment, 2018, 640-641, 454-465.                                         | 3.9 | 14        |
| 26 | Elemental mercury: Its unique properties affect its behavior and fate in the environment.<br>Environmental Pollution, 2017, 229, 69-86.                                                                                      | 3.7 | 120       |
| 27 | Adsorption kinetics and isotherms of arsenite and arsenate on hematite nanoparticles and aggregates.<br>Journal of Environmental Management, 2017, 186, 261-267.                                                             | 3.8 | 56        |
| 28 | Occurrence of Methylmercury in Rice-Based Infant Cereals and Estimation of Daily Dietary Intake of Methylmercury for Infants. Journal of Agricultural and Food Chemistry, 2017, 65, 9569-9578.                               | 2.4 | 31        |
| 29 | Thiolated arsenicals in arsenic metabolism: Occurrence, formation, and biological implications.<br>Journal of Environmental Sciences, 2016, 49, 59-73.                                                                       | 3.2 | 61        |
| 30 | Evaluating the role of re-adsorption of dissolved Hg2+ during cinnabar dissolution using isotope tracer technique. Journal of Hazardous Materials, 2016, 317, 466-475.                                                       | 6.5 | 15        |
| 31 | Mobility and speciation of arsenic in the coal fly ashes collected from the Savannah River Site (SRS).<br>Chemosphere, 2016, 151, 138-144.                                                                                   | 4.2 | 11        |
| 32 | Elemental Mercury in Natural Waters: Occurrence and Determination of Particulate Hg(0).<br>Environmental Science & Technology, 2015, 49, 9742-9749.                                                                          | 4.6 | 38        |
| 33 | Dimethylarsinothioyl Glutathione as a Metabolite in Human Multiple Myeloma Cell Lines upon<br>Exposure to Darinaparsin. Chemical Research in Toxicology, 2014, 27, 754-764.                                                  | 1.7 | 21        |
| 34 | Studying arsenite–humic acid complexation using size exclusion chromatography–inductively<br>coupled plasma mass spectrometry. Journal of Hazardous Materials, 2013, 262, 1223-1229.                                         | 6.5 | 26        |
| 35 | Estimation of the Major Source and Sink of Methylmercury in the Florida Everglades. Environmental<br>Science & Technology, 2012, 46, 5885-5893.                                                                              | 4.6 | 37        |
| 36 | Legacy and Fate of Mercury and Methylmercury in the Florida Everglades. Environmental Science<br>& Technology, 2011, 45, 496-501.                                                                                            | 4.6 | 15        |

GUANGLIANG LIU

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Complexation of Arsenite with Humic Acid in the Presence of Ferric Iron. Environmental Science &<br>Technology, 2011, 45, 3210-3216.                                                                          | 4.6 | 146       |
| 38 | Complexation of arsenite with dissolved organic matter: Conditional distribution coefficients and apparent stability constants. Chemosphere, 2010, 81, 890-896.                                               | 4.2 | 85        |
| 39 | Degradation of Methylmercury and Its Effects on Mercury Distribution and Cycling in the Florida<br>Everglades. Environmental Science & Technology, 2010, 44, 6661-6666.                                       | 4.6 | 74        |
| 40 | Spatial Variability in Mercury Cycling and Relevant Biogeochemical Controls in the Florida<br>Everglades. Environmental Science & Technology, 2009, 43, 4361-4366.                                            | 4.6 | 28        |
| 41 | Adsorption of Microcystin LR and LW on Suspended Particulate Matter (SPM) at Different pH. Water,<br>Air, and Soil Pollution, 2008, 192, 67-76.                                                               | 1.1 | 35        |
| 42 | Mercury Mass Budget Estimates and Cycling Seasonality in the Florida Everglades. Environmental<br>Science & Technology, 2008, 42, 1954-1960.                                                                  | 4.6 | 34        |
| 43 | Distribution of total and methylmercury in different ecosystem compartments in the Everglades:<br>Implications for mercury bioaccumulation. Environmental Pollution, 2008, 153, 257-265.                      | 3.7 | 80        |
| 44 | Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method. Science of the Total Environment, 2006, 369, 384-392. | 3.9 | 70        |