
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9215365/publications.pdf Version: 2024-02-01

KAODII FIIINAMI

#	Article	IF	CITATIONS
1	Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options. British Journal of Ophthalmology, 2017, 101, 25-30.	3.9	265
2	Clinical and Molecular Characteristics ofÂChildhood-Onset Stargardt Disease. Ophthalmology, 2015, 122, 326-334.	5.2	146
3	A Longitudinal Study of Stargardt Disease: Clinical and Electrophysiologic Assessment, Progression, and Genotype Correlations. American Journal of Ophthalmology, 2013, 155, 1075-1088.e13.	3.3	121
4	A Longitudinal Study of Stargardt Disease: Quantitative Assessment of Fundus Autofluorescence, Progression, and Genotype Correlations. , 2013, 54, 8181.		119
5	Clinical and Molecular Analysis of Stargardt Disease With Preserved Foveal Structure and Function. American Journal of Ophthalmology, 2013, 156, 487-501.e1.	3.3	100
6	Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genetics in Medicine, 2020, 22, 1235-1246.	2.4	92
7	Inherited retinal diseases: Therapeutics, clinical trials and end points—A review. Clinical and Experimental Ophthalmology, 2021, 49, 270-288.	2.6	68
8	Visual Acuity Loss and Associated Risk Factors in the Retrospective Progression of Stargardt Disease Study (ProgStar Report No. 2). Ophthalmology, 2016, 123, 1887-1897.	5.2	59
9	The Clinical Effect of Homozygous ABCA4 Alleles in 18 Patients. Ophthalmology, 2013, 120, 2324-2331.	5.2	56
10	Early Patterns of Macular Degeneration in ABCA4-Associated Retinopathy. Ophthalmology, 2018, 125, 735-746.	5.2	55
11	Novel <i>RP1L1</i> Variants and Genotype–Photoreceptor Microstructural Phenotype Associations in Cohort of Japanese Patients With Occult Macular Dystrophy. , 2016, 57, 4837.		54
12	Internal Limiting Membrane Peeling to Prevent Post-vitrectomy Epiretinal Membrane Development in Retinal Detachment. American Journal of Ophthalmology, 2016, 171, 1-10.	3.3	53
13	Inherited cataracts: molecular genetics, clinical features, disease mechanisms and novel therapeutic approaches. British Journal of Ophthalmology, 2020, 104, 1331-1337.	3.9	49
14	CLINICAL CHARACTERISTICS OF OCCULT MACULAR DYSTROPHY IN FAMILY WITH MUTATION OF RP1L1 GENE. Retina, 2012, 32, 1135-1147.	1.7	48
15	<i>ABCA4</i> Gene Screening by Next-Generation Sequencing in a British Cohort. , 2013, 54, 6662.		47
16	Detailed genetic characteristics of an international large cohort of patients with Stargardt disease: ProgStar study report 8. British Journal of Ophthalmology, 2019, 103, 390-397.	3.9	45
17	Visual Acuity Change Over 24 Months and Its Association With Foveal Phenotype and Genotype in Individuals With Stargardt Disease. JAMA Ophthalmology, 2018, 136, 920.	2.5	44
18	The Effect on Retinal Structure and Function of 15 Specific <i>ABCA4</i> Mutations: A Detailed Examination of 82 Hemizygous Patients. , 2016, 57, 5963.		41

3.3

20

#	Article	IF	CITATIONS
19	Prospective Cohort Study of Childhood-Onset Stargardt Disease: Fundus Autofluorescence Imaging, Progression, Comparison with Adult-Onset Disease, and Disease Symmetry. American Journal of Ophthalmology, 2020, 211, 159-175.	3.3	41
20	Phenotype and Progression of Retinal Degeneration Associated With Nullizigosity of <i>ABCA4</i> . , 2016, 57, 4668.		40
21	Cross-Sectional and Longitudinal Assessment of the Ellipsoid Zone in Childhood-Onset Stargardt Disease. Translational Vision Science and Technology, 2019, 8, 1.	2.2	40
22	GUCY2D-Associated Leber Congenital Amaurosis: A Retrospective Natural History Study in Preparation for Trials of Novel Therapies. American Journal of Ophthalmology, 2020, 210, 59-70.	3.3	39
23	Fundus Autofluorescence in Autosomal Dominant Occult Macular Dystrophy. JAMA Ophthalmology, 2011, 129, 597.	2.4	38
24	Clinical and Genetic Findings of Autosomal Recessive Bestrophinopathy in Japanese Cohort. American Journal of Ophthalmology, 2016, 168, 86-94.	3.3	33
25	Prediction of Causative Genes in Inherited Retinal Disorders from Spectral-Domain Optical Coherence Tomography Utilizing Deep Learning Techniques. Journal of Ophthalmology, 2019, 2019, 1-7.	1.3	32
26	Clinical and Genetic Characteristics of East Asian Patients with Occult Macular Dystrophy (Miyake) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 5
27	Clinical Stages of Occult Macular Dystrophy Based on Optical Coherence Tomographic Findings. , 2019, 60, 4691.		25
28	Longitudinal Changes of Fixation Location and Stability Within 12 Months in Stargardt Disease: ProgStar Report No. 12. American Journal of Ophthalmology, 2018, 193, 54-61.	3.3	24
29	Clinical and Genetic Characteristics of 18 Patients from 13 Japanese Families with CRX-associated retinal disorder: Identification of Genotype-phenotype Association. Scientific Reports, 2020, 10, 9531.	3.3	24
30	Missense variants in the X-linked gene <i>PRPS1</i> cause retinal degeneration in females. Human Mutation, 2018, 39, 80-91.	2.5	23
31	Parafoveal Photoreceptor Abnormalities in Asymptomatic Patients With <i>RP1L1</i> Mutations in Families With Occult Macular Dystrophy. , 2017, 58, 6020.		21
32	Clinical and genetic characteristics of 10 Japanese patients with PROM1 â€associated retinal disorder: A report of the phenotype spectrum and a literature review in the Japanese population. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2020, 184, 656-674.	1.6	21
33	Genetic Spectrum of EYS-associated Retinal Disease in a Large Japanese Cohort: Identification of Disease-associated Variants with Relatively High Allele Frequency. Scientific Reports, 2020, 10, 5497.	3.3	21
34	Faster Sensitivity Loss around Dense Scotomas than for Overall Macular Sensitivity in Stargardt Disease: ProgStar Report No. 14. American Journal of Ophthalmology, 2020, 216, 219-225.	3.3	20
35	RDH5-Related Fundus Albipunctatus in a Large Japanese Cohort. , 2020, 61, 53.		20

Sector Retinitis Pigmentosa: Extending the Molecular Genetics Basis and Elucidating the Natural History. American Journal of Ophthalmology, 2021, 221, 299-310.

#	Article	IF	CITATIONS
37	A Cross-Sectional and Longitudinal Study of Retinal Sensitivity in <i>RPE65</i> -Associated Leber Congenital Amaurosis. , 2018, 59, 3330.		19
38	X-Linked Retinoschisis. Ophthalmology, 2022, 129, 542-551.	5.2	19
39	Clinical course of focal choroidal excavation in Vogt–Koyanagi–Harada disease. Clinical Ophthalmology, 2014, 8, 2461.	1.8	18
40	Phenotypical Characteristics of <i>POC1B</i> -Associated Retinopathy in Japanese Cohort: Cone Dystrophy With Normal Funduscopic Appearance. , 2019, 60, 3432.		18
41	Novel mutations in the RS1 gene in Japanese patients with X-linked congenital retinoschisis. Human Genome Variation, 2019, 6, 3.	0.7	18
42	Fine central macular dots associated with childhoodâ€onset Stargardt Disease. Acta Ophthalmologica, 2014, 92, e157-9.	1.1	17
43	Case of cone dystrophy with normal fundus appearance associated with biallelic <i>POC1B</i> variants. Ophthalmic Genetics, 2018, 39, 255-262.	1.2	17
44	Retinal imaging in inherited retinal diseases. Annals of Eye Science, 2020, 5, 25-25.	2.1	17
45	KCNV2-Associated Retinopathy: Genetics, Electrophysiology, and Clinical Course—KCNV2 Study Group Report 1. American Journal of Ophthalmology, 2021, 225, 95-107.	3.3	17
46	Clinical and genetic characteristics of 14 patients from 13 Japanese families with RPGR-associated retinal disorder: report of eight novel variants. Human Genome Variation, 2019, 6, 34.	0.7	15
47	Clinical and Genetic Characteristics of 15 Affected Patients From 12 Japanese Families with <i>GUCY2D</i> -Associated Retinal Disorder. Translational Vision Science and Technology, 2020, 9, 2.	2.2	15
48	Stargardt Disease with Preserved Central Vision: identification of a putative novel mutation in ATPâ€binding cassette transporter gene. Acta Ophthalmologica, 2011, 89, e297-8.	1.1	14
49	Molecular characteristics of four Japanese cases with KCNV2 retinopathy: report of novel disease-causing variants. Molecular Vision, 2013, 19, 1580-90.	1.1	14
50	One-year outcome of intravitreal aflibercept injection for age-related macular degeneration resistant to ranibizumab: rapid morphologic recovery and subsequent visual improvement. Clinical Ophthalmology, 2016, 10, 969.	1.8	13
51	Prediction of causative genes in inherited retinal disorder from fundus photography and autofluorescence imaging using deep learning techniques. British Journal of Ophthalmology, 2021, 105, 1272-1279.	3.9	12
52	Machine Learning Algorithms to Detect Subclinical Keratoconus: Systematic Review. JMIR Medical Informatics, 2021, 9, e27363.	2.6	12
53	KCNV2-Associated Retinopathy: Detailed Retinal Phenotype and Structural Endpoints—KCNV2 Study Group Report 2. American Journal of Ophthalmology, 2021, 230, 1-11.	3.3	11
54	Macular Hole Associated with Vogt-Koyanagi-Harada Disease at the Acute Uveitic Stage. Case Reports in Ophthalmology, 2015, 6, 328-332.	0.7	10

#	Article	IF	CITATIONS
55	Spatial Functional Characteristics of East Asian Patients With Occult Macular Dystrophy (Miyake) Tj ETQq1 1 0.	784314 rg	BT /Overlock
56	The Progression of Stargardt Disease Using Volumetric Hill of Vision Analyses Over 24 Months: ProgStar Report No.15. American Journal of Ophthalmology, 2021, 230, 123-133.	3.3	10
57	Longitudinal followâ€up of siblings with a discordant Stargardt disease phenotype. Acta Ophthalmologica, 2014, 92, e331-2.	1.1	9
58	Genetic and Phenotypic Landscape of PRPH2-Associated Retinal Dystrophy in Japan. Genes, 2021, 12, 1817.	2.4	9
59	Characterization of GUCA1A-associated dominant cone/cone-rod dystrophy: low prevalence among Japanese patients with inherited retinal dystrophies. Scientific Reports, 2019, 9, 16851.	3.3	7
60	Clinical and genetic characteristics of Stargardt disease in a large Western China cohort: Report 1. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2020, 184, 694-707.	1.6	7
61	New variants and in silico analyses in GRK1 associated Oguchi disease. Human Mutation, 2021, 42, 164-176.	2.5	7
62	Phenogenon: Gene to phenotype associations for rare genetic diseases. PLoS ONE, 2020, 15, e0230587.	2.5	6
63	Genotype and Long-term Clinical Course of Bietti Crystalline Dystrophy in Korean and Japanese Patients. Ophthalmology Retina, 2021, 5, 1269-1279.	2.4	6
64	Haptic Breakage after Transscleral Fixation of a Single-Piece Acrylic Intraocular Lens. Case Reports in Ophthalmology, 2014, 5, 212-216.	0.7	5
65	Association of Retinal Artery and Other Inner Retinal Structures With Distribution of Tapetal-like Reflex in Oguchi's Disease. , 2015, 56, 2162.		5
66	Retinal findings in a patient with mutations in ABCC6 and ABCA4. Eye, 2018, 32, 1542-1543.	2.1	5
67	RP2 â€associated retinal disorder in a Japanese cohort: Report of novel variants and a literature review, identifying a genotype–phenotype association. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2020, 184, 675-693.	1.6	5
68	Longitudinal Changes of Fixation Stability and Location Within 24 Months in Stargardt Disease: ProgStar Report No. 16. American Journal of Ophthalmology, 2022, 233, 78-89.	3.3	5
69	Autosomal dominant optic atrophy with gene mutations accompanied by auditory neuropathy and other systemic complications in a Japanese cohort. Molecular Vision, 2019, 25, 559-573.	1.1	5
70	A recurrent variant in <i>LIM2</i> causes an isolated congenital sutural/lamellar cataract in a Japanese family. Ophthalmic Genetics, 2022, 43, 622-626.	1.2	4
71	Visual Field Characteristics in East Asian Patients With Occult Macular Dystrophy (Miyake Disease): EAOMD Report No. 3. , 2022, 63, 12.		3
72	Stargardt Disease in Asian Population. Essentials in Ophthalmology, 2019, , 279-295.	0.1	2

#	Article	IF	CITATIONS
73	Clinical course of a Japanese girl with Leber congenital amaurosis associated with a novel nonsense pathogenic variant in NMNAT1: a case report and mini review. Ophthalmic Genetics, 2022, , 1-9.	1.2	1
74	Stargardt Macular Dystrophy. , 2022, , 151-168.		1
75	Long-term follow-up of a Chinese patient with KCNV2-retinopathy. Ophthalmic Genetics, 2021, 42, 144-149.	1.2	О
76	A Japanese boy with double diagnoses of 2p15p16.1 microdeletion syndrome and RP2-associated retinal disorder. Human Genome Variation, 2021, 8, 46.	0.7	0