Inna Pogrebova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9215068/publications.pdf

Version: 2024-02-01

		2258059	1872680	
15	37	3	6	
papers	citations	h-index	g-index	
15	15	15	69	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	INFLUENCE OF HIGH TEMPERATURE OXIDATION ON CORROSION RESISTANCE OF CHROMOSYLICATED STEEL 45. Transactions of Kremenchuk Mykhailo Ostrohradskyi National University, 2021, , 92-97.	0.1	0
2	Inhibitors for acid corrosion of metals based on quaternary pyridinium salts containing carbonyl groups. Materials Today: Proceedings, 2019, 6, 192-201.	1.8	7
3	Protective properties of a new type coatings involving titanium, chromium, aluminum. Materials Today: Proceedings, 2019, 6, 202-211.	1.8	1
4	Structurization and High-Temperature Oxidation Resistance of U8A Steel with Ti–Cr–Al Multi-Component Diffusion Coatings. Powder Metallurgy and Metal Ceramics, 2016, 54, 665-671.	0.8	0
5	HIGH-ENTROPY TITANIUM-ALUMINUM DIFFUSION COATINGS ON NICKEL ALLOY. High Temperature Material Processes, 2016, 20, 267-278.	0.6	2
6	1-Phenacylmethyl-2-(acylaminothiocarbonylamino)pyridinium bromides as protectors of steel acid corrosion. Russian Journal of Applied Chemistry, 2007, 80, 675-677.	0.5	0
7	Anticorrosive properties of N-acetylmethylpyridinium bromides. Russian Journal of Applied Chemistry, 2006, 79, 1100-1104.	0.5	15
8	Corrosion-protective properties of 1-phenacylmethyl-2-arylcarbamido(arylthiocarbamido)pyridinium bromides. Russian Journal of Applied Chemistry, 2006, 79, 1969-1972.	0.5	1
9	Microstructure, Chemical and Phase Composition of Chromium Silicide Diffusion Coatings on Carbon Steels. Powder Metallurgy and Metal Ceramics, 2005, 44, 17-22.	0.8	0
10	Pyridinium Halides and Their Mixtures as Inhibitors of Steel Corrosion in Sulfuric Acid Solutions. Russian Journal of Applied Chemistry, 2005, 78, 511-513.	0.5	2
11	Corrosion-Preventing Properties of Benzyl-Substituted N-Benzylpyridinium Chlorides. Russian Journal of Applied Chemistry, 2005, 78, 1450-1453.	0.5	0
12	N-Phenacylpyridinium Bromides as Acid Corrosion Inhibitors. Russian Journal of Applied Chemistry, 2004, 77, 1117-1120.	0.5	1
13	Corrosion-Protective Properties of N-Phenacylmethylpyridinium Bromides. Russian Journal of Applied Chemistry, 2003, 76, 1764-1768.	0.5	2
14	Title is missing!. Russian Journal of Applied Chemistry, 2002, 75, 1248-1251.	0.5	2
15	Mechanism of Inhibition of Corrosion of Steel in the Presence of Sulfate-Reducing Bacteria. Materials Science, 2001, 37, 754-761.	0.9	4