Arlene G Correa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9214984/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An improved synthesis of the taxol side chain and of RP 56976. Journal of Organic Chemistry, 1990, 55, 1957-1959.	1.7	180
2	Transition Metal-Catalyzed [6+2] Cycloadditions of 2-Vinylcyclobutanones and Alkenes:Â A New Reaction for the Synthesis of Eight-Membered Rings. Journal of the American Chemical Society, 2000, 122, 7815-7816.	6.6	171
3	Direct, highly efficient synthesis from (S)-(+)-phenylglycine of the taxol and taxotere side chains. Journal of Organic Chemistry, 1991, 56, 6939-6942.	1.7	109
4	Highly Efficient and Magnetically Recoverable Niobium Nanocatalyst for the Multicomponent Biginelli Reaction. ChemCatChem, 2014, 6, 3455-3463.	1.8	86
5	Isolation, Identification, Synthesis, and Field Evaluation of the Sex Pheromone of the Brazilian Population of Spodoptera frugiperda. Journal of Chemical Ecology, 2006, 32, 1085-99.	0.9	76
6	An efficient one-pot strategy for the highly regioselective metal-free synthesis of 1,4-disubstituted-1,2,3-triazoles. Chemical Communications, 2014, 50, 11926-11929.	2.2	74
7	Angelica Lactones: From Biomassâ€Derived Platform Chemicals to Valueâ€Added Products. ChemSusChem, 2018, 11, 25-47.	3.6	65
8	Structure ofTrypanosoma cruziglycosomal glyceraldehyde-3-phosphate dehydrogenase complexed with chalepin, a natural product inhibitor, at 1.95 Ã resolution. FEBS Letters, 2002, 520, 13-17.	1.3	64
9	Recent advances in catalytic enantioselective multicomponent reactions. Organic and Biomolecular Chemistry, 2020, 18, 7751-7773.	1.5	62
10	Photochemistry of Carbonyl Compounds: Application in Metalâ€Free Reactions. ChemPhotoChem, 2019, 3, 506-520.	1.5	59
11	Anacardic acid derivatives as inhibitors of glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi. Bioorganic and Medicinal Chemistry, 2008, 16, 8889-8895.	1.4	58
12	Acetylcholinesterase capillary enzyme reactor for screening and characterization of selective inhibitors. Journal of Pharmaceutical and Biomedical Analysis, 2013, 73, 44-52.	1.4	56
13	Synthesis and biological evaluation of novel 2,3-disubstituted quinoxaline derivatives as antileishmanial and antitrypanosomal agents. European Journal of Medicinal Chemistry, 2015, 90, 107-123.	2.6	56
14	Biological activity of astilbin fromDimorphandra mollisagainstAnticarsia gemmatalisandSpodoptera frugiperda. Pest Management Science, 2002, 58, 503-507.	1.7	55
15	A short synthesis of the taxotere side chain through dilithiation of Boc-benzylamine. Journal of Organic Chemistry, 1993, 58, 255-257.	1.7	50
16	Heterogenous green catalysis: Application of zeolites on multicomponent reactions. Current Opinion in Green and Sustainable Chemistry, 2019, 15, 7-12.	3.2	50
17	Acetylcholinesterase Immobilized Capillary Reactors–Tandem Mass Spectrometry: An On-Flow Tool for Ligand Screening. Journal of Medicinal Chemistry, 2013, 56, 2038-2044.	2.9	49
18	Highly Stereoselective Synthesis of Naturalâ€Productâ€Like Hybrids by an Organocatalytic/Multicomponent Reaction Sequence. Angewandte Chemie - International Edition, 2015, 54, 7621-7625.	7.2	48

#	Article	IF	CITATIONS
19	Acetylcholinesterase immobilized capillary reactors coupled to protein coated magnetic beads: A new tool for plant extract ligand screening. Talanta, 2013, 116, 647-652.	2.9	47
20	Organocatalytic asymmetric epoxidation and tandem epoxidation/Passerini reaction under eco-friendly reaction conditions. Organic and Biomolecular Chemistry, 2012, 10, 7681.	1.5	44
21	Polyethylene glycol (PEG) as a reusable solvent medium for an asymmetric organocatalytic Michael addition. Application to the synthesis of bioactive compounds. Green Chemistry, 2014, 16, 3169-3174.	4.6	44
22	A Quinoxaline Derivative as a Potent Chemotherapeutic Agent, Alone or in Combination with Benznidazole, against Trypanosoma cruzi. PLoS ONE, 2014, 9, e85706.	1.1	42
23	Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions. Ultrasonics Sonochemistry, 2021, 78, 105704.	3.8	42
24	Structure–activity relationship of (â^') mammea A/BB derivatives against Leishmania amazonensis. Biomedicine and Pharmacotherapy, 2008, 62, 651-658.	2.5	40
25	Multicomponent Combinatorial Development and Conformational Analysis of Prolyl Peptide–Peptoid Hybrid Catalysts: Application in the Direct Asymmetric Michael Addition. Journal of Organic Chemistry, 2013, 78, 10221-10232.	1.7	40
26	Green synthesis of novel chalcone and coumarin derivatives via Suzuki coupling reaction. Tetrahedron Letters, 2012, 53, 2715-2718.	0.7	39
27	A Safe, Simple, One-Pot Preparation of N-Derivatized β-Amino Alcohols and Oxazolidinones from Amino Acids. Synthetic Communications, 1991, 21, 1-9.	1.1	37
28	Solid-phase synthesis of 2′-hydroxychalcones. Effects on cell growth inhibition, cell cycle and apoptosis of human tumor cell lines. Bioorganic and Medicinal Chemistry, 2012, 20, 25-33.	1.4	37
29	Effects of (â^') mammea A/BB isolated from Calophyllum brasiliense leaves and derivatives on mitochondrial membrane of Leishmania amazonensis. Phytomedicine, 2012, 19, 223-230.	2.3	37
30	C(<i>sp</i> ³)â^'C(<i>sp</i> ³) Cross oupling of Alkyl Bromides and Ethers Mediated by Metal and Visible Light Photoredox Catalysis. Advanced Synthesis and Catalysis, 2020, 362, 2367-2372.	2.1	37
31	<i>In Vitro</i> and <i>In Vivo</i> Activities of 2,3-Diarylsubstituted Quinoxaline Derivatives against Leishmania amazonensis. Antimicrobial Agents and Chemotherapy, 2016, 60, 3433-3444.	1.4	36
32	Composição quÃmica dos óleos essenciais das folhas de seis espécies do gênero Baccharis de "Campos de Altitude" da mata atlântica paulista. Quimica Nova, 2008, 31, 727-730.	0.3	36
33	A Simple and Efficient Synthesis of Thymoquinone and Methyl P-Benzoquinone. Synthetic Communications, 1985, 15, 1033-1036.	1.1	34
34	Preparation and evaluation of a coumarin library towards the inhibitory activity of the enzyme gGAPDH from Trypanosoma cruzi. Journal of the Brazilian Chemical Society, 2005, 16, 763-773.	0.6	34
35	Application of Bio-Based Solvents in Catalysis. Current Organic Synthesis, 2015, 12, 675-695.	0.7	34
36	Enantioselective synthesis of three stereoisomers of 5,9-dimethylpentadecane, sex pheromone component of Leucoptera coffeella, from (â~)-isopulegol. Tetrahedron: Asymmetry, 2003, 14, 3787-3795.	1.8	32

#	Article	IF	CITATIONS
37	Pollination by Sexual Mimicry in Mormolyca ringens: A Floral Chemistry that Remarkably Matches the Pheromones of Virgin Queens of Scaptotrigona sp Journal of Chemical Ecology, 2006, 32, 59-70.	0.9	32
38	Anti-tuberculosis neolignans from Piper regnellii. Phytomedicine, 2013, 20, 600-604.	2.3	31
39	Solution Phase Synthesis of a Combinatorial Library of Chalcones and Flavones as Potent Cathepsin V Inhibitors. ACS Combinatorial Science, 2010, 12, 687-695.	3.3	30
40	Evaluation of synthetic acridones and 4-quinolinones as potent inhibitors ofÂcathepsins L and V. European Journal of Medicinal Chemistry, 2012, 54, 10-21.	2.6	29
41	9-Benzoyl 9-deazaguanines as potent xanthine oxidase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 226-231.	1.4	29
42	Basic-functionalized recyclable ionic liquid catalyst: A solvent-free approach for Michael addition of 1,3-dicarbonyl compounds to nitroalkenes under ultrasound irradiation. Ultrasonics Sonochemistry, 2013, 20, 793-798.	3.8	27
43	Antileishmanial activity of amides from Piper amalago and synthetic analogs. Revista Brasileira De Farmacognosia, 2013, 23, 447-454.	0.6	27
44	Oxidation of mono-phenols to para-benzoquinones: a comparative study. Journal of the Brazilian Chemical Society, 2008, 19, 1484-1489.	0.6	26
45	Photoredox Catalysis toward 2-Sulfenylindole Synthesis through a Radical Cascade Process. Organic Letters, 2020, 22, 4266-4271.	2.4	25
46	Highlights in the solid-phase organic synthesis of natural products and analogues. Journal of the Brazilian Chemical Society, 2010, 21, 1401-1423.	0.6	24
47	Multicomponent Synthesis of Cyclic Depsipeptide Mimics by Ugi Reaction Including Cyclic Hemiacetals Derived from Asymmetric Organocatalysis. Journal of Organic Chemistry, 2016, 81, 803-809.	1.7	24
48	Synthesis of a Combinatorial Library of Amides and Its Evaluation against the Fall Armyworm, Spodoptera frugiperda. Journal of Agricultural and Food Chemistry, 2011, 59, 4822-4827.	2.4	23
49	Evaluation of 2′,4′-dihydroxy-3,4,5-trimethoxychalcone as antimitotic agent that induces mitotic catastrophe in MCF-7 breast cancer cells. Toxicology Letters, 2014, 229, 393-401.	0.4	23
50	Stereoselective Multicomponent Reactions in the Synthesis or Transformations of Epoxides and Aziridines. Molecules, 2019, 24, 630.	1.7	22
51	An Ecoâ€Friendly Asymmetric Organocatalytic Conjugate Addition of Malonates to α,βâ€Unsaturated Aldehydes: Application on the Synthesis of Chiral Indoles. European Journal of Organic Chemistry, 2013, 2013, 5917-5922.	1.2	21
52	Atividade inseticida de óleos essenciais de Pelargonium graveolens l'Herit e Lippia alba (Mill) N. E. Brown sobre Spodoptera frugiperda (J. E. Smith). Quimica Nova, 2013, 36, 1391-1394.	0.3	21
53	Intramolecular radical cyclization approach to access highly substituted indolines and 2,3-dihydrobenzofurans under visible-light. RSC Advances, 2018, 8, 12879-12886.	1.7	21
54	Liposome-based nanocarrier loaded with a new quinoxaline derivative for the treatment of cutaneous leishmaniasis. Materials Science and Engineering C, 2020, 110, 110720.	3.8	21

#	Article	IF	CITATIONS
55	Electrophysiological responses of eucalyptus brown looper Thyrinteina arnobia to essential oils of seven Eucalyptus species. Journal of the Brazilian Chemical Society, 2006, 17, 555-561.	0.6	21
56	Chemical composition of male and female Baccharis trimera (Less.) DC. (Asteraceae) essential oils. Biochemical Systematics and Ecology, 2008, 36, 737-740.	0.6	20
57	A laboratory evaluation of alcohols as attractants for the sandfly Lutzomyia longipalpis (Diptera:Psychodidae). Parasites and Vectors, 2014, 7, 60.	1.0	20
58	Identification, Syntheses, and Characterization of the Geometric Isomers of 9,11-Hexadecadienal from Female Pheromone Glands of the Sugar Cane BorerDiatraea saccharalis. Journal of Natural Products, 2002, 65, 909-915.	1.5	19
59	Green chemistry in Brazil. Pure and Applied Chemistry, 2013, 85, 1643-1653.	0.9	18
60	Continuous Synthesis of Hydantoins: Intensifying the Bucherer–Bergs Reaction. Synlett, 2015, 27, 83-87.	1.0	18
61	Immobilized cholinesterases capillary reactors on-flow screening of selective inhibitors. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 968, 87-93.	1.2	17
62	Quinoxaline derivatives as potential antitrypanosomal and antileishmanial agents. Bioorganic and Medicinal Chemistry, 2018, 26, 4065-4072.	1.4	17
63	USY-zeolite catalyzed synthesis of 1,4-dihydropyridines under microwave irradiation: structure and recycling of the catalyst. Journal of Molecular Structure, 2021, 1227, 129430.	1.8	16
64	Electrophysiological responses of female and male Hypsipyla grandella (Zeller) to Swietenia macrophylla essential oils. Journal of Chemical Ecology, 2003, 29, 2143-2151.	0.9	15
65	Multidimensional optimization of promising antitumor xanthone derivatives. Bioorganic and Medicinal Chemistry, 2013, 21, 2941-2959.	1.4	15
66	Acetylcholinesterase immobilized on modified magnetic beads as a tool for screening a compound library. Mikrochimica Acta, 2015, 182, 2209-2213.	2.5	15
67	A stereoselective sequential organocascade and multicomponent approach for the preparation of tetrahydropyridines and chimeric derivatives. Chemical Communications, 2019, 55, 286-289.	2.2	15
68	Structure–activity relationship of natural and synthetic coumarin derivatives against <i>Mycobacterium tuberculosis</i> . Future Medicinal Chemistry, 2020, 12, 1533-1546.	1.1	15
69	Volatile oil from Guarea macrophylla ssp. tuberculata: Seasonal variation and electroantennographic detection by Hypsipyla grandella. Phytochemistry, 2006, 67, 589-594.	1.4	14
70	Attraction of the sand fly Nyssomyia neivai (Diptera: Psychodidae) to chemical compounds in a wind tunnel. Parasites and Vectors, 2015, 8, 147.	1.0	14
71	Asymmetric synthesis and evaluation of epoxy-α-acyloxycarboxamides as selective inhibitors of cathepsin L. Bioorganic and Medicinal Chemistry, 2017, 25, 4620-4627.	1.4	14
72	Synthetic amides toxic to the leaf-cutting ant Atta sexdens rubropilosa L. and its symbiotic fungus. Agricultural and Forest Entomology, 2006, 8, 17-23.	0.7	13

#	Article	IF	CITATIONS
73	Enantioselective synthesis of (R)- and (S)-2-methyl-4-octanol, the male-produced aggregation pheromone of Curculionidae species. Tetrahedron: Asymmetry, 2002, 13, 621-624.	1.8	12
74	Insecticidal Activity of Synthetic Amides on Spodoptera frugiperda. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2006, 61, 196-202.	0.6	12
75	A novel synthetic quinolinone inhibitor presents proteolytic and hemorrhagic inhibitory activities against snake venom metalloproteases. Biochimie, 2016, 121, 179-188.	1.3	12
76	Electrophysiological Studies and Identification of Possible Sex Pheromone Components of Brazilian Populations of the Sugarcane Borer, Diatraea saccharalis. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 753-758.	0.6	11
77	Microwave-assisted synthesis of Nitroketene N,S-Arylaminoacetals. Journal of the Brazilian Chemical Society, 2010, 21, 795-799.	0.6	11
78	Effect of the synthetic coumarin, ethyl 2-oxo-2H-chromene-3-carboxylate, on activity of Crotalus durissus ruruima sPLA2 as well as on edema and platelet aggregation induced by this factor. Toxicon, 2010, 55, 1527-1530.	0.8	11
79	Toxicity of synthetic piperonyl compounds to leaf-cutting ants and their symbiotic fungus. Pest Management Science, 2001, 57, 603-608.	1.7	10
80	Synthesis of (4R,8R)- and (4S,8R)-4,8-dimethyldecanal: the common aggregation pheromone of flour beetles. Tetrahedron Letters, 2006, 47, 5135-5137.	0.7	10
81	1,1-Diamino-2-nitroethylenes as excellent hydrogen bond donor organocatalysts in the Michael addition of carbon-based nucleophiles to β-nitrostyrenes. Tetrahedron, 2013, 69, 9007-9012.	1.0	10
82	Asymmetric synthesis of new ^ĵ -butenolides via organocatalyzed epoxidation of chalcones. Organic and Biomolecular Chemistry, 2017, 15, 6098-6103.	1.5	10
83	Characterization of the interactions between coumarin-derivatives and acetylcholinesterase: Examination by NMR and docking simulations. Journal of Molecular Modeling, 2018, 24, 207.	0.8	10
84	Asymmetric organocatalyzed synthesis of coumarin derivatives. Beilstein Journal of Organic Chemistry, 2021, 17, 1952-1980.	1.3	10
85	Differentiation of five pine species cultivated in Brazil based on chemometric analysis of their volatiles identified by gas chromatography-mass spectrometry. Journal of the Brazilian Chemical Society, 2012, 23, 1756-1761.	0.6	9
86	Iron(III) chloride catalyzed glycosylation of peracylated sugars with allyl/alkynyl alcohols. Journal of the Brazilian Chemical Society, 2012, 23, 1982-1988.	0.6	8
87	Enantioselective synthesis of (2R,3R,7S)-3,7 -dimethylpentadecan-2-ol, sex pheromone component of pine sawflies. Journal of the Brazilian Chemical Society, 2000, 11, 614-620.	0.6	8
88	Electroantennographic responses of Heterotermes tenuis (Isoptera: Rhinotermitidae) to synthetic (3Z,6Z,8E)-Dodecatrien-1-ol. Journal of the Brazilian Chemical Society, 2004, 15, 372-377.	0.6	7
89	Electrophysiological Responses of Atta sexdens rubropilosa Workers to Essential Oils of Eucalyptus and its Chemical Composition. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2006, 61, 749-755.	0.6	7
90	Insect pheromone synthesis in Brazil: an overview. Journal of the Brazilian Chemical Society, 2007, 18, 1100-1124.	0.6	7

#	Article	IF	CITATIONS
91	Microwave-Promoted synthesis of novel N-Arylanthranilic acids. Journal of the Brazilian Chemical Society, 2008, 19, 1264-1269.	0.6	7
92	Click Chemistry: An Efficient Synthesis of Heterocycles Substituted with Steroids, Saponins, and Digitalis Analogues. Synthesis, 2011, 2011, 4003-4010.	1.2	7
93	Microwave-Assisted Synthesis ofN-Heterocycles and Their Evaluation Using an Acetylcholinesterase Immobilized Capillary Reactor. Journal of the Brazilian Chemical Society, 2014, , .	0.6	7
94	Organocatalyzed Asymmetric Vinylogous Addition of Oxazole-2(3 <i>H</i>)-thiones to α,β-Unsaturated Ketones: An Additive-Free Approach for Diversification of Heterocyclic Scaffold. Journal of Organic Chemistry, 2018, 83, 1701-1716.	1.7	7
95	SYNTHESIS OF THE FOUR POSSIBLE STEREOISOMERS OFN-2â€ ² -METHYLBUTYL-2-METHYLBUTYLAMIDE, THE SEX PHEROMONE OF THE LONGHORN BEETLEMIGDOLUS FRYANUSWESTWOOD. Synthetic Communications, 2001, 31, 3685-3698.	1.1	6
96	Synthesis of (<i>Z</i>)-β-halo α,β-unsaturated carbonyl systems <i>via</i> the combination of halotrimethylsilane and tetrafluoroboric acid. Organic and Biomolecular Chemistry, 2019, 17, 519-526.	1.5	6
97	Organocatalytic asymmetric vinylogous 1,4-addition of α,α-Dicyanoolefins to chalcones under a bio-based reaction media: Discovery of new Michael adducts with antiplasmodial activity. Tetrahedron, 2019, 75, 3530-3542.	1.0	6
98	Diels-Alder reactions in the synthesis of higher terpenes. Organic Synthesis: Theory and Applications, 2001, , 39-87.	0.0	6
99	Copperâ€Catalyzed Oneâ€Pot Synthesis of 3â€{ <i>N</i> â€Heteroarenyl)acrylonitriles through Radical Conjugated Addition of βâ€Nitrostyrene to Methylazaarenes. European Journal of Organic Chemistry, 2020, 2020, 4563-4570.	1.2	5
100	Parasitological profiling shows 4(1H)-quinolone derivatives as new lead candidates for malaria. European Journal of Medicinal Chemistry Reports, 2021, 3, 100012.	0.6	5
101	The increasing importance of carbohydrates in medicinal chemistry. Revista Virtual De Quimica, 2009, 1,	0.1	5
102	Microwave assisted synthesis of 4-quinolones and N,N′-diarylureas. Green Processing and Synthesis, 2013, 2, .	1.3	4
103	Step economy strategy for the synthesis of amphoteric aminoaldehydes, key intermediates for reduced hydantoins. Pure and Applied Chemistry, 2018, 90, 121-132.	0.9	4
104	Green Approach for Visible-Light-Induced Direct Functionalization of 2-Methylquinolines. Journal of Organic Chemistry, 2020, 85, 11663-11678.	1.7	4
105	Synthesis of <i>N</i> -alkylated lipopeptides and their application as organocatalysts in asymmetric Michael addition in aqueous environments. New Journal of Chemistry, 2021, 45, 14050-14057.	1.4	4
106	Advances on Greener Asymmetric Synthesis of Antiviral Drugs via Organocatalysis. Pharmaceuticals, 2021, 14, 1125.	1.7	4
107	Greener Synthesis of Pyrroloquinazoline Derivatives: Recent Advances. European Journal of Organic Chemistry, 2022, 2022, .	1.2	4
108	Green One-Pot Asymmetric Synthesis of Peptidomimetics via Sequential Organocatalyzed Aziridination and Passerini Multicomponent Reaction, Synthesis, 2020, 52, 1076-1086	1.2	3

#	ARTICLE	IF	CITATIONS
109	Green asymmetric synthesis of epoxypeptidomimetics and evaluation as human cathepsin K inhibitors. Bioorganic and Medicinal Chemistry, 2020, 28, 115597.	1.4	3
110	Antichagasic Activity of Lignans and Neolignans. Revista Virtual De Quimica, 2012, 4, .	0.1	3
111	O emprego de fermento de pão, Saccharomyces cerevisiae, na sÃntese de feromônios. Quimica Nova, 2004, 27, 421-431.	0.3	2
112	Aplicações da quÃmica combinatória no desenvolvimento de fármacos. Quimica Nova, 2001, 24, 236-242.	0.3	1
113	Electrophysiological Responses of the Naupactus bipes Beetle to Essential Oils from Piperaceae Species. Natural Product Communications, 2012, 7, 1934578X1200700.	0.2	1
114	Molecular Design, Synthesis and Evaluation of 2,3-Diarylquinoxalines as Estrogen Receptor Ligands. Medicinal Chemistry, 2015, 11, 736-746.	0.7	1
115	Studies towards the Identification of the Sex Pheromone ofThyrinteina arnobia. Journal of the Brazilian Chemical Society, 2013, , .	0.6	1
116	4th International IUPAC Conference on Green Chemistry. Green Processing and Synthesis, 2012, 1, .	1.3	0
117	Evaluation of Accelerated Solvent Extraction (ASE) Followed by Post-condensation Step (SSP) to Extract Contaminants from PET Flakes. Progress in Rubber, Plastics and Recycling Technology, 2016, 32, 73-86.	0.8	0
118	Direct Assay to Evaluate Phosphoenolpyruvate Carboxykinase Activity. Journal of the Brazilian Chemical Society, 0, , .	0.6	0
119	Microwave-Assisted Synthesis ofN-Heterocyclic Compounds. Revista Virtual De Quimica, 2010, 2, .	0.1	0
120	PEG: An Efficient Green Solvent for Organocatalytic Asymmetric Michael Addition. , 0, , .		0
121	QSAR-3D e Docking Molecular de Derivados de Ãcidos N-arilantranÃlicos com Atividade Inibitória na Enzima Catepsina L. Orbital, 2016, 1, .	0.1	0