
Julia E Weigand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9214932/publications.pdf Version: 2024-02-01

LULIA E WEICAND

#	Article	lF	CITATIONS
1	Screening for engineered neomycin riboswitches that control translation initiation. Rna, 2008, 14, 89-97.	3.5	176
2	Thermodynamic characterization of an engineered tetracycline-binding riboswitch. Nucleic Acids Research, 2006, 34, 2607-2617.	14.5	139
3	Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy. Nucleic Acids Research, 2020, 48, 12415-12435.	14.5	125
4	Tetracycline aptamer-controlled regulation of pre-mRNA splicing in yeast. Nucleic Acids Research, 2007, 35, 4179-4185.	14.5	112
5	Highly Modular Structure and Ligand Binding by Conformational Capture in a Minimalistic Riboswitch. Angewandte Chemie - International Edition, 2010, 49, 6216-6219.	13.8	91
6	A fast and efficient translational control system for conditional expression of yeast genes. Nucleic Acids Research, 2009, 37, e120-e120.	14.5	82
7	Hypoxia-Induced Alternative Splicing in Endothelial Cells. PLoS ONE, 2012, 7, e42697.	2.5	72
8	Aptamers and riboswitches: perspectives in biotechnology. Applied Microbiology and Biotechnology, 2009, 85, 229-236.	3.6	64
9	PELDOR Spectroscopy Reveals Preorganization of the Neomycin-Responsive Riboswitch Tertiary Structure. Journal of the American Chemical Society, 2010, 132, 1454-1455.	13.7	57
10	Exploring the Druggability of Conserved RNA Regulatory Elements in the SARS oVâ€2 Genome. Angewandte Chemie - International Edition, 2021, 60, 19191-19200.	13.8	55
11	Ligand-induced conformational capture of a synthetic tetracycline riboswitch revealed by pulse EPR. Rna, 2011, 17, 182-188.	3.5	49
12	Mechanistic insights into an engineered riboswitch: a switching element which confers riboswitch activity. Nucleic Acids Research, 2011, 39, 3363-3372.	14.5	48
13	Conformational dynamics of the tetracycline-binding aptamer. Nucleic Acids Research, 2012, 40, 1807-1817.	14.5	48
14	A Universal Aptamer Chimera for the Delivery of Functional microRNA-126. Nucleic Acid Therapeutics, 2015, 25, 141-151.	3.6	40
15	A small, portable RNA device for the control of exon skipping in mammalian cells. Nucleic Acids Research, 2018, 46, e48-e48.	14.5	40
16	What a Difference an OH Makes: Conformational Dynamics as the Basis for the Ligand Specificity of the Neomycinâ€Sensing Riboswitch. Angewandte Chemie - International Edition, 2016, 55, 1527-1530.	13.8	38
17	Auto- and cross-regulation of the hnRNPs D and DL. Rna, 2018, 24, 324-331.	3.5	35
18	Tetracycline Determines the Conformation of Its Aptamer at Physiological Magnesium Concentrations. Biophysical Journal, 2014, 107, 2962-2971.	0.5	32

Julia E Weigand

#	Article	IF	CITATIONS
19	Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications. Frontiers in Molecular Biosciences, 2021, 8, 653148.	3.5	29
20	1H, 13C, and 15N backbone chemical shift assignments of the C-terminal dimerization domain of SARS-CoV-2 nucleocapsid protein. Biomolecular NMR Assignments, 2021, 15, 129-135.	0.8	25
21	Influence of Mg ²⁺ on the conformational flexibility of a tetracycline aptamer. Rna, 2019, 25, 158-167.	3.5	24
22	Building a stable RNA U-turn with a protonated cytidine. Rna, 2014, 20, 1163-1172.	3.5	21
23	A combined computational pipeline to detect circular RNAs in human cancer cells under hypoxic stress. Journal of Molecular Cell Biology, 2019, 11, 829-844.	3.3	21
24	Structure guided fluorescence labeling reveals a two-step binding mechanism of neomycin to its RNA aptamer. Nucleic Acids Research, 2019, 47, 15-28.	14.5	21
25	Muscleblind-like 2 controls the hypoxia response of cancer cells. Rna, 2020, 26, 648-663.	3.5	19
26	Identification of new high affinity targets for Roquin based on structural conservation. Nucleic Acids Research, 2018, 46, 12109-12125.	14.5	17
27	Design and implementation of a synthetic pre-miR switch for controlling miRNA biogenesis in mammals. Nucleic Acids Research, 2017, 45, e181-e181.	14.5	15
28	Hypoxia reduces MAX expression in endothelial cells by unproductive splicing. FEBS Letters, 2014, 588, 4784-4790.	2.8	14
29	sST2 translation is regulated by FGF2 via an hnRNP A1-mediated IRES-dependent mechanism. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 848-859.	1.9	14
30	1H, 13C, and 15N backbone chemical shift assignments of the apo and the ADP-ribose bound forms of the macrodomain of SARS-CoV-2 non-structural protein 3b. Biomolecular NMR Assignments, 2020, 14, 339-346.	0.8	14
31	Sequence Elements Distal to the Ligand Binding Pocket Modulate the Efficiency of a Synthetic Riboswitch. ChemBioChem, 2014, 15, 1627-1637.	2.6	11
32	1H, 13C, and 15N backbone chemical shift assignments of the nucleic acid-binding domain of SARS-CoV-2 non-structural protein 3e. Biomolecular NMR Assignments, 2020, 14, 329-333.	0.8	7
33	1H, 13C and 15N chemical shift assignment of the stem-loop 5a from the 5′-UTR of SARS-CoV-2. Biomolecular NMR Assignments, 2021, 15, 203-211.	0.8	7
34	1H, 13C, 15N and 31P chemical shift assignment for stem-loop 4 from the 5′-UTR of SARS-CoV-2. Biomolecular NMR Assignments, 2021, 15, 335-340.	0.8	7
35	Structural basis for the recognition of transiently structured AU-rich elements by Roquin. Nucleic Acids Research, 2020, 48, 7385-7403.	14.5	6
36	1H, 13C, and 15N backbone chemical shift assignments of coronavirus-2 non-structural protein Nsp10. Biomolecular NMR Assignments, 2021, 15, 65-71.	0.8	6

Julia E Weigand

#	Article	IF	CITATIONS
37	Exploring the Druggability of Conserved RNA Regulatory Elements in the SARSâ€CoVâ€⊋ Genome. Angewandte Chemie, 2021, 133, 19340-19349.	2.0	5
38	1H, 13C and 15N assignment of stem-loop SL1 from the 5'-UTR of SARS-CoV-2. Biomolecular NMR Assignments, 2021, 15, 467-474.	0.8	4
39	A Novel, Universally Active C-terminal Protein Degradation Signal Generated by Alternative Splicing. Journal of Molecular Biology, 2021, 433, 166890.	4.2	1
40	1H, 13C and 15N chemical shift assignment of the stem-loops 5b + c from the 5′-UTR of SARS-CoV-2. Biomolecular NMR Assignments, 2022, , 1.	0.8	0