Takeo Yamaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9214879/publications.pdf Version: 2024-02-01

TAKED YAMACUCHL

#	Article	IF	CITATIONS
1	Hemolysis of Human Erythrocytes under Hydrostatic Pressure Is Suppressed by Cross-Linking of Membrane Proteins. Journal of Biochemistry, 1990, 108, 1057-1062.	1.7	67
2	Effects of Temperature and pH on Hemoglobin Release from Hydrostatic Pressure-Treated Erythrocytes1. Journal of Biochemistry, 1989, 106, 1080-1085.	1.7	43
3	Vesiculation Induced by Hydrostatic Pressure in Human Erythrocytes. Journal of Biochemistry, 1991, 110, 355-359.	1.7	23
4	Hemolytic Properties under Hydrostatic Pressure of Neuraminidase or Protease-Treated Human Erythrocytes1. Journal of Biochemistry, 1993, 114, 576-581.	1.7	23
5	Effects of Anion Transport Inhibitors on Hemolysis of Human Erythrocytes under Hydrostatic Pressure1. Journal of Biochemistry, 1995, 118, 760-764.	1.7	17
6	Activation of the intrinsic and extrinsic pathways in high pressure-induced apoptosis of murine erythroleukemia cells. Cellular and Molecular Biology Letters, 2008, 13, 49-57.	7.0	17
7	Reinvestigation of Drugs and Chemicals as Aquaporin-1 Inhibitors Using Pressure-Induced Hemolysis in Human Erythrocytes. Biological and Pharmaceutical Bulletin, 2012, 35, 2088-2091.	1.4	12
8	Enhancement of Pressure-Induced Hemolysis by Aquaporin-1 Inhibitors in Human Erythrocytes. Bulletin of the Chemical Society of Japan, 2012, 85, 497-503.	3.2	9
9	ATP effects on response of human erythrocyte membrane to high pressure. Biophysics and Physicobiology, 2019, 16, 158-166.	1.0	9
10	Caspase Activation in High-Pressure. Induced Apoptosis of Murine Erythroleukemia Cells The Japanese Journal of Physiology, 2001, 51, 193-199.	0.9	8
11	Effects of Cholesterol on Membrane Stability of Human Erythrocytes. Biological and Pharmaceutical Bulletin, 2020, 43, 1604-1608.	1.4	8
12	Conformational changes of spin-labeled membrane proteins in human erythrocytes. FEBS Letters, 1982, 141, 53-55.	2.8	7
13	Oxidation of nitroxide radicals by an iron-hydrogen peroxide-amino acid system. FEBS Letters, 1985, 192, 259-262.	2.8	7
14	Hemolytic Properties of Ca2+-Treated Human Erythrocytes under Hydrostatic Pressure1. Journal of Biochemistry, 1994, 116, 773-777.	1.7	7
15	High-Pressure-Induced Hemolysis in Papain-Digested Human Erythrocytes Is Suppressed by Cross-Linking of Band 3 via Anti-Band 3 Antibodies. Journal of Biochemistry, 2005, 137, 535-541.	1.7	7
16	Membrane Perturbations of Erythrocyte Ghosts by Spectrin Release. Journal of Biochemistry, 2007, 141, 747-754.	1.7	6
17	High-Pressure-Induced Hemolysis of Hereditary Spherocytic Erythrocytes Is Not Suppressed by DIDS Labeling The Japanese Journal of Physiology, 1997, 47, 571-574.	0.9	5
18	Effects of intracellular pH on high pressure-induced hemolysis of anion transport inhibitor-treated erythrocytes. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1280, 243-250.	2.6	4

ΤΑΚΕΟ ΥΑΜΑGUCHI

#	Article	IF	CITATIONS
19	Excimer Fluorescence ofN-(1-Pyrenyl)iodoacetamide-Labeled Spectrin. Bulletin of the Chemical Society of Japan, 1999, 72, 2509-2513.	3.2	4
20	Water proton spin-lattice relaxation time during the apoptotic process in ultraviolet-irradiated murine erythroleukemia cells. Journal of Physiological Sciences, 2009, 59, 131-136.	2.1	3
21	Membrane damages under high pressure of human erythrocytes agglutinated by concanavalin A. Colloids and Surfaces B: Biointerfaces, 2014, 116, 695-699.	5.0	3
22	Membrane perturbations induced by the interactions of zinc ions with band 3 in human erythrocytes. Biochemistry and Biophysics Reports, 2015, 2, 63-68.	1.3	3
23	Importance of Cholesterol Side Chain in the Membrane Stability of Human Erythrocytes. Biological and Pharmaceutical Bulletin, 2021, 44, 888-893.	1.4	3
24	Membrane Response of Human Erythrocytes Exposed to a Pressure of 140 MPa. Bulletin of the Chemical Society of Japan, 2020, 93, 326-331.	3.2	3
25	Analysis of high-pressure-induced disruption of human erythrocytes by flow cytometry. Cellular and Molecular Biology Letters, 2003, 8, 1013-6.	7.0	3
26	Agglutination of human erythrocytes by the interaction of Zn2+ion with histidine-651 on the extracellular domain of band 3. Colloids and Surfaces B: Biointerfaces, 2016, 141, 284-290.	5.0	2
27	High Pressure Sensitizes Murine Erythroleukemia Cells to Caffeine-Induced Premature Mitosis The Japanese Journal of Physiology, 2000, 50, 329-336.	0.9	2
28	Interaction of Carbodiimide with Human Erythrocytes: Hemolytic Properties Induced by High Pressure, Heating, and Hypotonic Medium. Bulletin of the Chemical Society of Japan, 1996, 69, 2305-2308.	3.2	1
29	Effects of Chemical Modification of Cysteines 201 and 317 of Band 3 on Hemolytic Properties of Human Erythrocytes under Hydrostatic Pressure. The Japanese Journal of Physiology, 1998, 48, 205-210.	0.9	1
30	Pressure-induced hemolysis ofin vivoaged human erythrocytes is enhanced by inhibition of water transport via aquaporin-1. High Pressure Research, 2013, 33, 285-291.	1.2	1
31	Papain cleavage of the 38,000-dalton fragment inhibits the binding of 4, 4'-diisothiocyanostilbene-2, 2'-disulfonate to Lys-539 on the 60,000-dalton fragment in human band 3. Journal of Biochemistry, 2017, 162, mvx005.	1.7	1
32	Deuterium Oxide Stabilizes the Membrane Structure of Human Erythrocytes under High Pressure. Chemistry Letters, 2018, 47, 1490-1493.	1.3	1
33	Reduction of Thermotolerance by Heat Shock Protein 90 Inhibitors in Murine Erythroleukemia Cells. Biological and Pharmaceutical Bulletin, 2018, 41, 1393-1400.	1.4	1
34	Hemolytic properties of human erythrocytes under hydrostatic pressure Seibutsu Butsuri, 1997, 37, 73-77.	0.1	1