
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9214793/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Mistletoe infection changes arthropod community on its cactus host through indirect effects. Insect Conservation and Diversity, 2022, 15, 288-298.	1.4	2
2	The green thorns of Ulex europaeus play both defensive and photosynthetic roles: consequences for predictions of the enemy release hypothesis. Biological Invasions, 2022, 24, 385-398.	1.2	2
3	How and when fungal endophytes can eliminate the plant growth–defence tradeâ€off: mechanistic perspectives. New Phytologist, 2022, 235, 388-390.	3.5	0
4	Gregarious caterpillars shorten their larval development time in response to simulated predation threat. Ecological Entomology, 2022, 47, 906-910.	1.1	2
5	Phenotypic plasticity and the leaf economics spectrum: plasticity is positively associated with specific leaf area. Oikos, 2022, 2022, .	1.2	9
6	Disturbance reinforces community assembly processes differentially across spatial scales. Annals of Botany, 2021, 127, 175-189.	1.4	11
7	Habitat-islands in the coastal Atacama Desert: loss of functional redundancy, but not of functional diversity, with decreased precipitation. Annals of Botany, 2021, 127, 669-680.	1.4	4
8	Evidence of indirect biotic resistance: native ants decrease invasive plant fitness by enhancing aphid infestation. Oecologia, 2021, 196, 607-618.	0.9	0
9	Interactive effects of shading and disturbance on plant invasion in an arid shrubland: Assembly processes and CSRâ€strategies. Journal of Ecology, 2021, 109, 2405-2420.	1.9	9
10	Fungal endophytes can eliminate the plant growth–defence tradeâ€off. New Phytologist, 2021, 230, 2105-2113.	3.5	47
11	Temperature regime influences accessions and effectiveness of germination promoters in the highâ€Andean crop maca. Agronomy Journal, 2021, 113, 2557-2566.	0.9	1
12	Global trends in phenotypic plasticity of plants. Ecology Letters, 2021, 24, 2267-2281.	3.0	80
13	Phenotypic plasticity may mediate habitat filtering in a forest edge community. Oikos, 2021, 130, 1788-1796.	1.2	7
14	Evolution of physiological performance in invasive plants under climate change*. Evolution; International Journal of Organic Evolution, 2021, 75, 3181-3190.	1.1	8
15	Endophytic bacterial communities are associated with leaf mimicry in the vine Boquila trifoliolata. Scientific Reports, 2021, 11, 22673.	1.6	1
16	Leaf resistance traits influence endophytic fungi colonization and community composition in a South American temperate rainforest. Journal of Ecology, 2020, 108, 1019-1029.	1.9	27
17	Gregariousness affects performance and defensive reactions in swallowtail caterpillars. Ecological Entomology, 2020, 45, 1428-1436.	1.1	3
18	Defence variation within a guild of aphidâ€ŧending ants explains aphid population growth. Ecological Entomology, 2020, 45, 1180-1189.	1.1	6

ERNESTO GIANOLI

#	Article	IF	CITATIONS
19	Parallel functional differentiation of an invasive annual plant on two continents. AoB PLANTS, 2019, 11, plz010.	1.2	13
20	Biotic homogenization within and across eight widely distributed grasslands following invasion by <i>Bromus inermis</i> . Ecology, 2019, 100, e02717.	1.5	33
21	Goat grazing reduces diversity and leads to functional, taxonomic, and phylogenetic homogenization in an arid shrubland. Land Degradation and Development, 2019, 30, 178-189.	1.8	36
22	Chlorophyll Fluorescence May Predict Tolerance to Herbivory. International Journal of Plant Sciences, 2019, 180, 81-85.	0.6	13
23	Indirect facilitation by a liana might explain the dominance of a small tree in a temperate forest. Journal of Plant Ecology, 2018, 11, 604-612.	1.2	4
24	Maternal experience and soil origin influence interactions between resident species and a dominant invasive species. Oecologia, 2018, 186, 247-257.	0.9	5
25	Functional trait variation predicts distribution of alien plant species across the light gradient in a temperate rainforest. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 32, 49-55.	1.1	17
26	Crassulacean acid metabolism and distribution range in Chilean Bromeliaceae: Influences of climate and phylogeny. Journal of Biogeography, 2018, 45, 1541-1549.	1.4	2
27	Ecological and evolutionary impacts of changing climatic variability. Biological Reviews, 2017, 92, 22-42.	4.7	201
28	Disturbance by an endemic rodent in an arid shrubland is a habitat filter: effects on plant invasion and taxonomical, functional and phylogenetic community structure. Annals of Botany, 2017, 119, mcw258.	1.4	9
29	Uneven abundances determine nestedness in climbing plant-host interaction networks. Perspectives in Plant Ecology, Evolution and Systematics, 2017, 26, 53-59.	1.1	8
30	Tolerance to herbivory and the resource availability hypothesis. Biology Letters, 2017, 13, 20170120.	1.0	41
31	Divergent Patterns of Selection on Crassulacean Acid Metabolism Photosynthesis in Contrasting Environments. International Journal of Plant Sciences, 2017, 178, 398-405.	0.6	5
32	Shade tolerance and herbivory are associated with <scp>RGR</scp> of tree species <i>via</i> different functional traits. Plant Biology, 2017, 19, 413-419.	1.8	27
33	Differential responses of native and exotic plant species to an invasive grass are driven by variation in biotic and abiotic factors. Journal of Vegetation Science, 2017, 28, 325-336.	1.1	25
34	Population variation in drought-resistance strategies in a desert shrub along an aridity gradient: Interplay between phenotypic plasticity and ecotypic differentiation. Perspectives in Plant Ecology, Evolution and Systematics, 2017, 29, 12-19.	1.1	43
35	Pupal colour dimorphism in a desert swallowtail (<scp>L</scp> epidoptera: <scp>P</scp> apilionidae) is driven by changes in food availability, not photoperiod. Ecological Entomology, 2017, 42, 636-644.	1.1	25

4.3 7

#	Article	IF	CITATIONS
37	Genetic variation of loci potentially under selection confounds species–genetic diversity correlations in a fragmented habitat. Molecular Ecology, 2017, 26, 431-443.	2.0	17
38	Woody climbers show greater population genetic differentiation than trees: Insights into the link between ecological traits and diversification. Evolution; International Journal of Organic Evolution, 2016, 70, 2736-2745.	1.1	5
39	Spatial pattern of invasion and the evolutionary responses of native plant species. Evolutionary Applications, 2016, 9, 939-951.	1.5	15
40	Genetic variation in the reduction of attractive floral traits of an annual tarweed in response to drought and apical damage. Journal of Plant Ecology, 2016, 9, 629-635.	1.2	5
41	Abundance and diversity of lianas in a Neotropical dry forest: the influence of soil moisture. Plant Ecology and Evolution, 2016, 149, 329-334.	0.3	3
42	The behavioural ecology of climbing plants. AoB PLANTS, 2015, 7, .	1.2	68
43	Environmental heterogeneity leads to higher plasticity in dryâ€edge populations of a semiâ€arid Chilean shrub: insights into climate change responses. Journal of Ecology, 2015, 103, 338-350.	1.9	107
44	The relative importance of climate, stand variables and liana abundance for carbon storage in tropical forests. Global Ecology and Biogeography, 2015, 24, 939-949.	2.7	35
45	Energy expenditure and body size are targets of natural selection across a wide geographic range, in a terrestrial invertebrate. Functional Ecology, 2015, 29, 1463-1474.	1.7	17
46	Effects of windâ€driven spatial structure and environmental heterogeneity on highâ€altitude wetland macroinvertebrate assemblages with contrasting dispersal modes. Freshwater Biology, 2015, 60, 297-310.	1.2	22
47	Species Divergence and Phylogenetic Variation of Ecophysiological Traits in Lianas and Trees. PLoS ONE, 2014, 9, e99871.	1.1	12
48	Nocturnal resource defence in aphidâ€ŧending ants of northern <scp>P</scp> atagonia. Ecological Entomology, 2014, 39, 203-209.	1.1	8
49	Antarctic macrolichen modifies microclimate and facilitates vascular plants in the maritime <scp>A</scp> ntarctica – a reply to Casanovaâ€Katny etÂal. (2014). Journal of Vegetation Science, 2014, 25, 606-608.	1.1	3
50	Leaf Mimicry in a Climbing Plant Protects against Herbivory. Current Biology, 2014, 24, 984-987.	1.8	94
51	Latitudinal variation in the degree of crassulacean acid metabolism in <i><scp>P</scp>uya chilensis</i> . Plant Biology, 2014, 16, 848-852.	1.8	10
52	Antarctic Ecology One Century after the Conquest of the South Pole: How Much Have We Advanced?. BioScience, 2014, 64, 593-600.	2.2	2
53	The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 2014, 17, 1351-1364.	3.0	802
54	Distribution and traits of climbing plants in subtropical and temperate <scp>S</scp> outh <scp>A</scp> merica. Journal of Vegetation Science, 2014, 25, 1484-1492.	1.1	20

#	Article	IF	CITATIONS
55	Phenotypic selection on leaf functional traits of two congeneric species in a temperate rainforest is consistent with their shade tolerance. Oecologia, 2013, 173, 13-21.	0.9	18
56	Positive interactions between the lichen <i><scp>U</scp>snea antarctica</i> (<scp>P</scp> armeliaceae) and the native flora in <scp>M</scp> aritime <scp>A</scp> ntarctica. Journal of Vegetation Science, 2013, 24, 463-472.	1.1	25
57	Effects of host plant and maternal feeding experience on population vital rates of a specialized leaf beetle. Arthropod-Plant Interactions, 2013, 7, 109-118.	0.5	8
58	Carbon stocks in tropical forests decrease with liana density. Biology Letters, 2013, 9, 20130301.	1.0	68
59	Seabirds modify El Niño effects on tree growth in a southern Pacific island. Ecology, 2013, 94, 2415-2425.	1.5	10
60	Global distribution of root climbers is positively associated with precipitation and negatively associated with seasonality. Journal of Tropical Ecology, 2013, 29, 357-360.	0.5	22
61	Pollination biology and floral longevity of <i>Aristolochia chilensis</i> in an arid ecosystem. Plant Ecology and Diversity, 2013, 6, 181-186.	1.0	10
62	Ecophysiological plasticity and local differentiation help explain the invasion success of <i>Taraxacum officinale</i> (dandelion) in South America. Ecography, 2013, 36, 718-730.	2.1	33
63	Trends in Antarctic ecological research in Latin America shown by publications in international journals. Polar Research, 2013, 32, 19993.	1.6	1
64	Functional variation of leaf succulence in a cold rainforest epiphyte. Plant Ecology and Evolution, 2013, 146, 167-172.	0.3	7
65	Local Host Adaptation and Use of a Novel Host in the Seed Beetle Megacerus eulophus. PLoS ONE, 2013, 8, e53892.	1.1	4
66	WITHIN-POPULATION GENETIC DIVERSITY OF CLIMBING PLANTS AND TREES IN A TEMPERATE FOREST IN CENTRAL CHILE. Gayana - Botanica, 2013, 70, 36-43.	0.3	5
67	Bottom-up effects may not reach the top: the influence of ant–aphid interactions on the spread of soil disturbances through trophic chains. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3779-3787.	1.2	14
68	Occurrence of the Nonâ€Native Annual Bluegrass on the Antarctic Mainland and Its Negative Effects on Native Plants. Conservation Biology, 2012, 26, 717-723.	2.4	91
69	Ecophysiological Traits May Explain the Abundance of Climbing Plant Species across the Light Gradient in a Temperate Rainforest. PLoS ONE, 2012, 7, e38831.	1.1	22
70	Herbivores Modify Selection on Plant Functional Traits in a Temperate Rainforest Understory. American Naturalist, 2012, 180, E42-E53.	1.0	39
71	Plasticidad fenotÃpica en dos poblaciones antárticas de Colobanthus quitensis (Caryophyllaceae) bajo un escenario simulado de cambio global. Gayana - Botanica, 2012, 69, 152-160.	0.3	19
72	Soil disturbance by a native rodent drives microhabitat expansion of an alien plant. Biological Invasions, 2012, 14, 1211-1220.	1.2	7

#	Article	IF	CITATIONS
73	Costs <i>versus</i> risks: Architectural changes with changing light quantity and quality in saplings of temperate rainforest trees of different shade tolerance. Austral Ecology, 2012, 37, 35-43.	0.7	28
74	Studying phenotypic plasticity: the advantages of a broad approach. Biological Journal of the Linnean Society, 2012, 105, 1-7.	0.7	89
75	Costs versus risks: Architectural changes with changing light quantity and quality in saplings of temperate rainforest trees of different shade tolerance. , 2012, 37, 35.		1
76	Body mass and water economy in the South American olivaceous field mouse along a latitudinal gradient: Implications for climate change. Journal of Arid Environments, 2011, 75, 411-415.	1.2	10
77	Extremely Long-Lived Stigmas Allow Extended Cross-Pollination Opportunities in a High Andean Plant. PLoS ONE, 2011, 6, e19497.	1.1	41
78	The effects of fire-related cues on seed germination and viability of Helenium aromaticum (Hook.) H.L. Bailey (Asteraceae). Gayana - Botanica, 2011, 68, 86-88.	0.3	8
79	Herbivory may modify functional responses to shade in seedlings of a light-demanding tree species. Functional Ecology, 2011, 25, 492-499.	1.7	31
80	Invasive plants do not display greater phenotypic plasticity than their native or nonâ€invasive counterparts: a metaâ€analysis. Oikos, 2011, 120, 1393-1401.	1.2	162
81	Crassulacean acid metabolism photosynthesis in Bromeliaceae: an evolutionary key innovation. Biological Journal of the Linnean Society, 2011, 104, 480-486.	0.7	32
82	Forests are not immune to plant invasions: phenotypic plasticity and local adaptation allow Prunella vulgaris to colonize a temperate evergreen rainforest. Biological Invasions, 2011, 13, 1615-1625.	1.2	60
83	Anthropogenic fire drives the evolution of seed traits. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18743-18747.	3.3	68
84	Climbing plants in a temperate rainforest understorey: searching for high light or coping with deep shade?. Annals of Botany, 2011, 108, 231-239.	1.4	40
85	Drought and leaf damage limit the search for support in the climbing plant Ipomoea purpurea (L.) Roth (Convolvulaceae). Gayana - Botanica, 2011, 68, 207-212.	0.3	4
86	Counteractive biomass allocation responses to drought and damage in the perennial herb <i>Convolvulus demissus</i> . Austral Ecology, 2010, 35, 544-548.	0.7	11
87	Explaining differential herbivory in sun and shade: the case of Aristotelia chilensis saplings. Arthropod-Plant Interactions, 2010, 4, 229-235.	0.5	27
88	Phenotypic plasticity and performance of Taraxacum officinale (dandelion) in habitats of contrasting environmental heterogeneity. Biological Invasions, 2010, 12, 2277-2284.	1.2	44
89	Distribution and abundance of vines along the light gradient in a southern temperate rain forest. Journal of Vegetation Science, 2010, 21, 66-73.	1.1	58
90	Global change and the evolution of phenotypic plasticity in plants. Annals of the New York Academy of Sciences, 2010, 1206, 35-55.	1.8	341

#	Article	IF	CITATIONS
91	Herbivory on Temperate Rainforest Seedlings in Sun and Shade: Resistance, Tolerance and Habitat Distribution. PLoS ONE, 2010, 5, e11460.	1.1	44
92	DROUGHT LIMITS INDUCED TWINING BY LEAF DAMAGE IN THE CLIMBING PLANT IPOMOEA PURPUREA (L.) ROTH (CONVOLVULACEAE). Gayana - Botanica, 2009, 66, .	0.3	2
93	Preference of Quinoa Moth: Eurysacca Melanocampta Meyrick (Lepidoptera: Gelechiidae) for Two Varieties of Quinoa (Chenopodium quinoa Willd.) in Olfactometry Assays. Chilean Journal of Agricultural Research, 2009, 69, .	0.4	4
94	Insights into the relationship between the <i>h</i> â€index and selfâ€citations. Journal of the Association for Information Science and Technology, 2009, 60, 1283-1285.	2.6	24
95	Foliar damage modifies floral attractiveness to pollinators in Alstroemeria exerens. Evolutionary Ecology, 2009, 23, 545-555.	0.5	20
96	Smallâ€scale disturbances spread along trophic chains: leafâ€cutting ant nests, plants, aphids, and tending ants. Ecological Research, 2009, 24, 139-145.	0.7	14
97	Phenotypic integration may constrain phenotypic plasticity in plants. Oikos, 2009, 118, 1924-1928.	1.2	58
98	Abundance of climbing plants in a southern temperate rain forest: host tree characteristics or light availability?. Journal of Vegetation Science, 2009, 20, 1155-1162.	1.1	52
99	Effect of water availability on tolerance of leaf damage in tall morning glory, Ipomoea purpurea. Acta Oecologica, 2009, 35, 236-242.	0.5	17
100	Leaf damage decreases fitness and constrains phenotypic plasticity to drought of a perennial herb. Acta Oecologica, 2009, 35, 752-757.	0.5	13
101	Patterns of <i>Azteca</i> ants' defence of <i>Cecropia</i> trees in a tropical rainforest: support for optimal defence theory. Ecological Research, 2008, 23, 905-908.	0.7	8
102	Effects of maternal diet and host quality on oviposition patterns and offspring performance in a seed beetle (Coleoptera: Bruchidae). Die Naturwissenschaften, 2008, 95, 609-615.	0.6	12
103	Induction of glandular and non-glandular trichomes by damage in leaves of Madia sativa under contrasting water regimes. Acta Oecologica, 2008, 33, 128-132.	0.5	71
104	Water availability limits tolerance of apical damage in the Chilean tarweed Madia sativa. Acta Oecologica, 2008, 34, 104-110.	0.5	30
105	Induced twining in Convolvulaceae climbing plants in response to leaf damage. Botany, 2008, 86, 595-602.	0.5	10
106	Tolerance to simulated herbivory in two populations of Convolvulus chilensis (Convolvulaceae). Acta Oecologica, 2007, 32, 119-123.	0.5	14
107	Oviposition deterrence of shoots and essential oils of <i>Minthostachys</i> spp. (Lamiaceae) against the potato tuber moth. Journal of Applied Entomology, 2007, 131, 134-138.	0.8	12
108	Damage and shade enhance climbing and promote associational resistance in a climbing plant. Journal of Ecology, 2007, 96, 071119203335007-???.	1.9	16

#	Article	IF	CITATIONS
109	How Much Ecology Do We Need to Know to Restore Mediterranean Ecosystems?. Restoration Ecology, 2007, 15, 363-368.	1.4	53
110	Ecological limits to plant phenotypic plasticity. New Phytologist, 2007, 176, 749-763.	3.5	764
111	Host-associated variation in sexual size dimorphism and fitness effects of adult feeding in a bruchid beetle. Entomologia Experimentalis Et Applicata, 2007, 122, 233-237.	0.7	13
112	Group size in a gregarious tortoise beetle: patterns of oviposition vs. larval behaviour. Entomologia Experimentalis Et Applicata, 2007, 125, 165-169.	0.7	5
113	Cost and benefits of attractive floral traits in the annual species Madia sativa (Asteraceae). Evolutionary Ecology, 2007, 21, 247-257.	0.5	29
114	Natural selection on ecophysiological traits of a fern species in a temperate rainforest. Evolutionary Ecology, 2007, 21, 651-662.	0.5	49
115	Benefits of a maize–bean–weeds mixed cropping system in Urubamba Valley, Peruvian Andes. International Journal of Pest Management, 2006, 52, 283-289.	0.9	25
116	Leaf trichome density may explain herbivory patterns ofÂActinote sp. (Lepidoptera: Acraeidae) onÂLiabumÂmandonii (Asteraceae) inÂaÂmontane humid forest (Nor Yungas, Bolivia). Acta Oecologica, 2006, 30, 147-150.	0.5	26
117	Nurse effect in seedling establishment: facilitation and tolerance to damage in the Andes of central Chile. Revista Chilena De Historia Natural, 2006, 79, 329.	0.5	24
118	Interactive Effects of Leaf Damage, Light Intensity and Support Availability on Chemical Defenses and Morphology of a Twining Vine. Journal of Chemical Ecology, 2006, 33, 95-103.	0.9	18
119	Leaf damage induces twining in a climbing plant. New Phytologist, 2005, 167, 385-390.	3.5	16
120	Species richness and structure of ant communities in a dynamic archipelago: effects of island area and age. Journal of Biogeography, 2005, 32, 221-227.	1.4	44
121	Ecophysiological responses to light availability in three Blechnum species (Pteridophyta, Blechnaceae) of different ecological breadth. Oecologia, 2005, 145, 251-256.	0.9	56
122	Effect of support availability, mother plant genotype and maternal support environment on the twining vine Ipomoea purpurea. Plant Ecology, 2005, 179, 231-235.	0.7	9
123	Environmental Heterogeneity and Population Differentiation in Plasticity to Drought in Convolvulus Chilensis (Convolvulaceae). Evolutionary Ecology, 2005, 19, 603-613.	0.5	115
124	Does drought affect inbreeding depression in the autogamous species <i>Convolvulus chilensis</i> (Convolvulaceae)?. New Zealand Journal of Botany, 2005, 43, 825-829.	0.8	4
125	Ecotypic Differentiation in Morphology and Cold Resistance in Populations of Colobanthus quitensis (Caryophyllaceae) from the Andes of Central Chile and the Maritime Antarctic. Arctic, Antarctic, and Alpine Research, 2004, 36, 484-489.	0.4	52
126	Evolution of a climbing habit promotes diversification in flowering plants. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2011-2015.	1.2	95

#	Article	IF	CITATIONS
127	Metaâ€analysis of Tradeâ€offs among Plant Antiherbivore Defenses: Are Plants Jacksâ€ofâ€Allâ€Trades, Masters of All?. American Naturalist, 2004, 163, E64-E75.	1.0	256
128	Plasticity of Traits and Correlations in Two Populations ofÂConvolvulus arvensis(Convolvulaceae) Differing in EnvironmentalÂHeterogeneity. International Journal of Plant Sciences, 2004, 165, 825-832.	0.6	78
129	Morphological plasticity in response to shading in three Convolvulus species of different ecological breadth. Acta Oecologica, 2004, 26, 185-190.	0.5	64
130	BiologÃa reproductiva de Convolvulus chilensis (Convolvulaceae) en una población de Aucó (centro-norte de Chile). Revista Chilena De Historia Natural, 2004, 77, .	0.5	11
131	Title is missing!. Plant Ecology, 2003, 165, 21-26.	0.7	39
132	Evaluation of induced responses, insect population growth, and host-plant fitness may change the outcome of tests of the preference-performance hypothesis: a case study. Entomologia Experimentalis Et Applicata, 2003, 109, 211-216.	0.7	9
133	A phenotypic trade-off between constitutive defenses and induced responses in wheat seedlings. Ecoscience, 2002, 9, 482-488.	0.6	17
134	Maternal environmental effects on the phenotypic responses of the twining vine Ipomoea purpurea to support availability. Oikos, 2002, 99, 324-330.	1.2	31
135	Insect pests and natural enemies in two varieties of quinua (Chenopodium quinoa) at Cusco, Peru. Journal of Applied Entomology, 2002, 126, 275-280.	0.8	13
136	Plant quality vs. risk of parasitism: within-plant distribution and performance of the corn leaf aphid, Rhopalosiphum maidis. Agricultural and Forest Entomology, 2001, 3, 29-33.	0.7	15
137	Feeding by the aphid Sipha flava produces a reddish spot on leaves of Sorghum halepense: an induced defense?. Journal of Chemical Ecology, 2001, 27, 273-283.	0.9	56
138	Lack of Differential Plasticity to Shading of Internodes and Petioles with Growth Habit inConvolvulus arvensis(Convolvulaceae). International Journal of Plant Sciences, 2001, 162, 1247-1252.	0.6	35
139	Plasticity of leaf traits and insect herbivory in Solanum incanum L. (Solanaceae) in Nguruman, SW Kenya. African Journal of Ecology, 2000, 38, 183-187.	0.4	10
140	Competition in Cereal Aphids (Homoptera: Aphididae) on Wheat Plants. Environmental Entomology, 2000, 29, 213-219.	0.7	47
141	Allocation of a Hydroxamic Acid and Biomass During Vegetative Development in Rye. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2000, 50, 35-39.	0.3	5
142	Within-plant distribution of Rhopalosiphum padi on wheat seedlings is affected by induced responses. Entomologia Experimentalis Et Applicata, 1999, 93, 227-230.	0.7	17
143	Defoliation Affects Chemical Defenses in All Plant Parts of Rye Seedlings. Journal of Chemical Ecology, 1999, 25, 491-499.	0.9	23
144	Within-plant allocation of a chemical defense in Secale cereale. Is concentration the appropriate currency of allocation?. Chemoecology, 1999, 9, 113-117.	0.6	8

#	Article	IF	CITATIONS
145	Title is missing!. Euphytica, 1998, 102, 317-321.	0.6	27
146	Allocation of herbivory-induced hydroxamic acids in the wild wheat Triticum uniaristatum. Chemoecology, 1998, 8, 19-23.	0.6	14
147	Changes in growth and chemical defences upon defoliation in maize. Phytochemistry, 1998, 49, 1921-1923.	1.4	19
148	No risk, no gain? Limited benefits of a non-costly herbivory-induced defense in wheat. Ecoscience, 1998, 5, 480-485.	0.6	5
149	Lack of Costs of Herbivory-Induced Defenses in a Wild Wheat: Integration of Physiological and Ecological Approaches. Oikos, 1997, 80, 269.	1.2	34
150	Variability in Grain Aphid (Homoptera: Aphididae) Performance and Aphid-Induced Phytochemical Responses in Wheat. Environmental Entomology, 1997, 26, 638-641.	0.7	14
151	Effect of defoliation on the patterns of allocation of a hydroxamic acid in rye (Secale cereale). Environmental and Experimental Botany, 1997, 38, 231-235.	2.0	17
152	Environmental Effects on the Accumulation of Hydroxamic Acids in Wheat Seedlings: The Importance of Plant Growth Rate. Journal of Chemical Ecology, 1997, 23, 543-551.	0.9	24
153	Characteristics of Hydroxamic Acid Induction in Wheat Triggered by Aphid Infestation. Journal of Chemical Ecology, 1997, 23, 2695-2705.	0.9	41
154	Costs and benefits of hydroxamic acids-related resistance in winter wheat against the bird cherry-oat aphid, Rhopalosiphum padi L. Annals of Applied Biology, 1996, 129, 83-90.	1.3	25
155	Environmental effects on the induction of wheat chemical defences by aphid infestation. Oecologia, 1996, 107, 549-552.	0.9	25
156	Ecophysiological basis of the Jack-and-Master strategy: <i>Taraxacum officinale</i> (dandelion) as an example of a successful invader. Journal of Plant Ecology, 0, , rtw121.	1.2	4
157	Co-occurrence of host plants associated with plant quality determines performance patterns of the specialist butterfly, Battus polydamas archidamas (Lepidoptera: Papilionidae: Troidini). European Journal of Entomology, 0, 113, 150-157.	1.2	6