Yoshinori Murata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9214685/publications.pdf

Version: 2024-02-01

516710 434195 32 983 16 31 citations h-index g-index papers 32 32 32 1161 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Potentials of multi-stress tolerant yeasts, Saccharomyces cerevisiae and Pichia kudriavzevii for fuel ethanol production from industrial cassava wastes. Process Biochemistry, 2021, 111, 305-314.	3.7	10
2	Chemical characterization from parenchyma and vascular bundle at different parts of oil palm trunk. AIP Conference Proceedings, 2019, , .	0.4	7
3	Bioethanol production under multiple stress condition by a new acid and temperature tolerant Saccharomyces cerevisiae strain LC 269108 isolated from rotten fruits. Process Biochemistry, 2018, 67, 105-112.	3.7	16
4	Evaluation of Enzymatic Deinking of Non-impact Ink Laser-Printed Paper Using Crude Enzyme from Penicillium rolfsii c3-2(1) IBRL. Applied Biochemistry and Biotechnology, 2017, 181, 451-463.	2.9	12
5	A new pretreatment using ammonia gas absorption fiber expansion for saccharification of cassava pulp. Biomass Conversion and Biorefinery, 2016, 6, 181-188.	4.6	4
6	Characterization of oil-palm trunk residue degradation enzymes derived from the isolated fungus, Penicillium rolfsiic 3-2(1) IBRL. Environmental Technology (United Kingdom), 2016, 37, 1550-1558.	2.2	4
7	Analysis of Free Sugar and Starch in Oil Palm Trunks (Elaeis Guineensis Jacq.) from Various Cultivars as a Feedstock for Bioethanol Production. International Journal of Green Energy, 2015, , 150218144136008.	3.8	2
8	Detection of vascular bundles using cell wall birefringence on exposure to polarized light. Industrial Crops and Products, 2015, 65, 190-197.	5.2	8
9	Ethanol fermentation by the thermotolerant yeast, Kluyveromyces marxianus TISTR5925, of extracted sap from old oil palm trunk. AIMS Energy, 2015, 3, 201-213.	1.9	12
10	Growth Inhibition of Thermotolerant Yeast, Kluyveromyces marxianus, in Hydrolysates from Cassava Pulp. Applied Biochemistry and Biotechnology, 2014, 173, 1197-1208.	2.9	13
11	Development of sap compressing systems from oil palm trunk. Biomass and Bioenergy, 2013, 51, 8-16.	5.7	17
12	Estimation of the Ratio of Vascular Bundles to Parenchyma Tissue in Oil Palm Trunks using NIR Spectroscopy. BioResources, 2013, 8, .	1.0	16
13	Ethanol production at high temperature from cassava pulp by a newly isolated Kluyveromyces marxianus strain, TISTR 5925. AIMS Energy, 2013, 1, 3-16.	1.9	16
14	Efficient ethanol production from separated parenchyma and vascular bundle of oil palm trunk. Bioresource Technology, 2012, 125, 37-42.	9.6	25
15	Potential of Oil Palm Trunk Sap as a Novel Inexpensive Renewable Carbon Feedstock for Polyhydroxyalkanoate Biosynthesis and as a Bacterial Growth Medium. Clean - Soil, Air, Water, 2012, 40, 310-317.	1.1	26
16	Isolation and characterization of a new cellulosome-producing Clostridium thermocellum strain. Biodegradation, 2012, 23, 57-68.	3.0	32
17	Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and \hat{l}^2 -glucosidase. Applied Microbiology and Biotechnology, 2011, 90, 377-384.	3.6	53
18	Purification and characterization of a multienzyme complex produced by Paenibacillus curdlanolyticus B-6. Applied Microbiology and Biotechnology, 2010, 85, 573-580.	3.6	35

#	Article	IF	Citations
19	Genome-Wide Expression Changes in Saccharomyces cerevisiae in Response to High-LET Ionizing Radiation. Applied Biochemistry and Biotechnology, 2010, 162, 855-870.	2.9	11
20	Ethanol and lactic acid production using sap squeezed from old oil palm trunks felled for replanting. Journal of Bioscience and Bioengineering, 2010, 110, 322-325.	2.2	95
21	Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase. Renewable Energy, 2009, 34, 1354-1358.	8.9	110
22	Changes in Gene Expression of Commercial Baker's Yeast during an Air-Drying Process that Simulates Dried Yeast Production. Journal of Bioscience and Bioengineering, 2008, 106, 405-408.	2.2	18
23	Functional genomics of commercial baker's yeasts that have different abilities for sugar utilization and highâ€sucrose tolerance under different sugar conditions. Yeast, 2007, 24, 901-911.	1.7	19
24	Identification and classification of genes required for tolerance to freeze–thaw stress revealed by genome-wide screening ofSaccharomyces cerevisiaedeletion strains. FEMS Yeast Research, 2007, 7, 244-253.	2.3	62
25	Overexpression of two transcriptional factors, Kin28 and Pog1, suppresses the stress sensitivity caused by the <i>rsp5 </i> mutation in <i>Saccharomyces cerevisiae </i> FEMS Microbiology Letters, 2007, 277, 70-78.	1.8	13
26	Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae. FEMS Yeast Research, 2006, 6, 249-267.	2.3	55
27	Genome-wide expression analysis of yeast response during exposure to 4°C. Extremophiles, 2006, 10, 117-128.	2.3	88
28	The evaluation of environmental waters using yeast DNA microarray. Chem-Bio Informatics Journal, 2006, 6, 29-46.	0.3	1
29	Response of Saccharomyces cerevisiae to a monoterpene: evaluation of antifungal potential by DNA microarray analysis. Journal of Antimicrobial Chemotherapy, 2004, 54, 46-55.	3.0	95
30	A new approach to species determination for yeast strains: DNA microarray-based comparative genomic hybridization using a yeast DNA microarray with 6000 genes. Yeast, 2004, 21, 351-365.	1.7	27
31	Dimethyl Sulfoxide Exposure Facilitates Phospholipid Biosynthesis and Cellular Membrane Proliferation in Yeast Cells. Journal of Biological Chemistry, 2003, 278, 33185-33193.	3.4	72
32	Cluster analysis and display of genome-wide expression profiles in dimethyl sulfoxide treatment. Chem-Bio Informatics Journal, 2002, 2, 18-31.	0.3	9