
Daniel E Stange

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9214461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459, 262-265.	13.7	5,339
2	Long-term Expansion of Epithelial Organoids From Human Colon, Adenoma, Adenocarcinoma, and Barrett's Epithelium. Gastroenterology, 2011, 141, 1762-1772.	0.6	2,835
3	Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 2011, 469, 415-418.	13.7	2,054
4	Lgr5+ve Stem Cells Drive Self-Renewal in the Stomach and Build Long-Lived Gastric Units In Vitro. Cell Stem Cell, 2010, 6, 25-36.	5.2	1,315
5	Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature, 2011, 476, 293-297.	13.7	1,096
6	Lineage Tracing Reveals Lgr5 ⁺ Stem Cell Activity in Mouse Intestinal Adenomas. Science, 2012, 337, 730-735.	6.0	991
7	Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature, 2012, 488, 665-669.	13.7	791
8	<i>Lgr6</i> Marks Stem Cells in the Hair Follicle That Generate All Cell Lineages of the Skin. Science, 2010, 327, 1385-1389.	6.0	692
9	The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent â€~+4' cell markers. EMBO Journal, 2012, 31, 3079-3091.	3.5	634
10	Transcription Factor Achaete Scute-Like 2 Controls Intestinal Stem Cell Fate. Cell, 2009, 136, 903-912.	13.5	615
11	A Chromosome 8 Gene-Cluster Polymorphism with Low Human Beta-Defensin 2 Gene Copy Number Predisposes to Crohn Disease of the Colon. American Journal of Human Genetics, 2006, 79, 439-448.	2.6	487
12	OLFM4 Is a Robust Marker for Stem Cells in Human Intestine and Marks a Subset of Colorectal Cancer Cells. Gastroenterology, 2009, 137, 15-17.	0.6	450
13	Differentiated Troy+ Chief Cells Act as Reserve Stem Cells to Generate All Lineages of the Stomach Epithelium. Cell, 2013, 155, 357-368.	13.5	445
14	Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nature Cell Biology, 2012, 14, 401-408.	4.6	350
15	Controlled gene expression in primary Lgr5 organoid cultures. Nature Methods, 2012, 9, 81-83.	9.0	295
16	Prominin-1/CD133 Marks Stem Cells and Early Progenitors in Mouse Small Intestine. Gastroenterology, 2009, 136, 2187-2194.e1.	0.6	215
17	The Ets-Domain Transcription Factor Spdef Promotes Maturation of Goblet and Paneth Cells in the Intestinal Epithelium. Gastroenterology, 2009, 137, 1333-1345.e3.	0.6	208
18	Genomic and Protein Expression Profiling Identifies CDK6 As Novel Independent Prognostic Marker in Medulloblastoma. Journal of Clinical Oncology, 2005, 23, 8853-8862.	0.8	207

DANIEL E STANGE

#	Article	IF	CITATIONS
19	Human gastric cancer modelling using organoids. Gut, 2019, 68, 207-217.	6.1	204
20	Troy+ brain stem cells cycle through quiescence and regulate their number by sensing niche occupancy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E610-E619.	3.3	138
21	Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell, 2021, 28, 816-832.	5.2	133
22	Frizzled7 Functions as a Wnt Receptor in Intestinal Epithelial Lgr5+ Stem Cells. Stem Cell Reports, 2015, 4, 759-767.	2.3	114
23	Notch1 counteracts WNT/β-catenin signaling through chromatin modification in colorectal cancer. Journal of Clinical Investigation, 2012, 122, 3248-3259.	3.9	114
24	Indian Hedgehog Regulates Intestinal Stem Cell Fate Through Epithelialâ^'Mesenchymal Interactions During Development. Gastroenterology, 2010, 139, 893-903.	0.6	111
25	Detection of chromosomal imbalances in retinoblastoma by matrix-based comparative genomic hybridization. Genes Chromosomes and Cancer, 2005, 43, 294-301.	1.5	101
26	Defining the Identity and Dynamics of Adult Gastric Isthmus Stem Cells. Cell Stem Cell, 2019, 25, 342-356.e7.	5.2	97
27	Expression of an ASCL2 related stem cell signature and IGF2 in colorectal cancer liver metastases with 11p15.5 gain. Gut, 2010, 59, 1236-1244.	6.1	88
28	High-Resolution Genomic Profiling Reveals Association of Chromosomal Aberrations on 1q and 16p with Histologic and Genetic Subgroups of Invasive Breast Cancer. Clinical Cancer Research, 2006, 12, 345-352.	3.2	85
29	Recurrent coamplification of cytoskeleton-associated genesEMS1 andSHANK2 withCCND1 in oral squamous cell carcinoma. Genes Chromosomes and Cancer, 2006, 45, 118-125.	1.5	60
30	Highly Sensitive Proteome Analysis of FACS-Sorted Adult Colon Stem Cells. Journal of Proteome Research, 2011, 10, 3814-3819.	1.8	60
31	Gastrointestinal organoids: How they gut it out. Developmental Biology, 2016, 420, 239-250.	0.9	60
32	Gastric organoids—an in vitro model system for the study of gastric development and road to personalized medicine. Cell Death and Differentiation, 2021, 28, 68-83.	5.0	56
33	Tracing oncogene-driven remodelling of the intestinal stem cell niche. Nature, 2021, 594, 442-447.	13.7	56
34	Mouse Models of Human Gastric Cancer Subtypes With Stomach-Specific CreERT2-Mediated Pathway Alterations. Gastroenterology, 2019, 157, 1599-1614.e2.	0.6	50
35	Concise review: The Yin and Yang of intestinal (cancer) stem cells and their progenitors. Stem Cells, 2013, 31, 2287-2295.	1.4	30
36	Organoids as Model Systems for Gastrointestinal Diseases: Tissue Engineering Meets Genetic Engineering. Current Pathobiology Reports, 2016, 4, 1-9.	1.6	25

DANIEL E STANGE

#	ARTICLE	IF	CITATIONS
37	EGFR amplification and outcome in a randomised phase III trial of chemotherapy alone or chemotherapy plus panitumumab for advanced gastro-oesophageal cancers. Gut, 2021, 70, 1632-1641.	6.1	24
38	Stem Cells, Helicobacter pylori, and Mutational Landscape: Utility of Preclinical Models to Understand Carcinogenesis and to Direct Management of Gastric Cancer. Gastroenterology, 2022, 162, 1067-1087.	0.6	21
39	p57Kip2 imposes the reserve stem cell state of gastric chief cells. Cell Stem Cell, 2022, 29, 826-839.e9.	5.2	17
40	Microbiota-dependent activation of the myeloid calcineurin-NFAT pathway inhibits B7H3- and B7H4-dependent anti-tumor immunity in colorectal cancer. Immunity, 2022, 55, 701-717.e7.	6.6	16
41	Gastrointestinal cancer organoids—applications in basic and translational cancer research. Experimental and Molecular Medicine, 2021, 53, 1459-1470.	3.2	15
42	CFTR Expression Analysis for Subtyping of Human Pancreatic Cancer Organoids. Stem Cells International, 2019, 2019, 1-8.	1.2	14
43	Detecting drug resistance in pancreatic cancer organoids guides optimized chemotherapy treatment. Journal of Pathology, 2022, 257, 607-619.	2.1	13
44	Efficient Correction of Oncogenic <i>KRAS</i> and <i>TP53</i> Mutations through CRISPR Base Editing. Cancer Research, 2022, 82, 3002-3015.	0.4	12
45	Robotic-assisted minimally invasive Ivor Lewis esophagectomy within the prospective multicenter German da Vinci Xi registry trial. Langenbeck's Archives of Surgery, 2022, 407, 1-11.	0.8	10
46	Co-application of canavanine and irradiation uncouples anticancer potential of arginine deprivation from citrulline availability. Oncotarget, 2016, 7, 73292-73308.	0.8	9
47	Intestinal Stem Cells. Digestive Diseases, 2013, 31, 293-298.	0.8	6
48	Universal and Efficient Electroporation Protocol for Genetic Engineering of Gastrointestinal Organoids. Journal of Visualized Experiments, 2020, , .	0.2	4
49	Comparative Analysis of Postoperative Complications after Cytoreductive Surgery and HIPEC in Gastric Cancer. Oncology Research and Treatment, 2022, 45, 45-53.	0.8	4
50	A more physiological approach to lipid metabolism alterations in cancer: CRC-like organoids assessment. PLoS ONE, 2019, 14, e0219944.	1.1	3
51	Defining the Identity and Dynamics of Adult Gastric Isthmus Stem Cells. SSRN Electronic Journal, 0, , .	0.4	1