Petr KováÅ™

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9214375/publications.pdf

Version: 2024-02-01

840776 794594 23 353 11 19 citations h-index g-index papers 23 23 23 544 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Porphyrins Intercalated in Zn/Al and Mg/Al Layered Double Hydroxides: Properties and Structural Arrangement. Chemistry of Materials, 2010, 22, 2481-2490.	6.7	59
2	Inorganicâ^'Organic Hybrid Materials: Layered Zinc Hydroxide Salts with Intercalated Porphyrin Sensitizers. Journal of Physical Chemistry C, 2010, 114, 16321-16328.	3.1	35
3	Insight into the Structure of Layered Zinc Hydroxide Salts Intercalated with Dodecyl Sulfate Anions. Journal of Physical Chemistry C, 2014, 118, 27131-27141.	3.1	35
4	Molecular modeling of layered double hydroxide intercalated with benzoate, modeling and experiment. Journal of Molecular Modeling, 2007, 13, 937-942.	1.8	29
5	Intercalation of paracetamol into the hydrotalcite-like host. Journal of Solid State Chemistry, 2011, 184, 3329-3335.	2.9	26
6	Precipitation, stabilization and molecular modeling of ZnS nanoparticles in the presence of cetyltrimethylammonium bromide. Journal of Colloid and Interface Science, 2012, 377, 58-63.	9.4	23
7	Selection of Covalent Organic Framework Pore Functionalities for Differential Adsorption of Microcystin Toxin Analogues. ACS Applied Materials & Samp; Interfaces, 2021, 13, 15053-15063.	8.0	22
8	Mg-Al layered double hydroxide intercalated with porphyrin anions: molecular simulations and experiments. Journal of Molecular Modeling, 2010, 16, 223-233.	1.8	20
9	Extraction of Ibuprofen from Natural Waters Using a Covalent Organic Framework. Molecules, 2020, 25, 3132.	3.8	19
10	Robust Aluminum and Iron Phosphinate Metal–Organic Frameworks for Efficient Removal of Bisphenol A. Inorganic Chemistry, 2020, 59, 5538-5545.	4.0	17
11	Layered double hydroxide intercalated with p-methylbenzoate and p-bromobenzoate: Molecular simulations and XRD analysis. Journal of Colloid and Interface Science, 2008, 319, 19-24.	9.4	15
12	Adsorption of nerve agent simulants onto vermiculite structure: Experiments and modelling. Journal of Hazardous Materials, 2020, 382, 121001.	12.4	12
13	Geometry optimization of zirconium sulfophenylphosphonate layers by molecular simulation methods. Journal of Molecular Modeling, 2018, 24, 10.	1.8	7
14	Intercalates of Strontium Phenylphosphonate with Alcohols – Structure Analysis by Experimental and Molecular Modeling Methods. European Journal of Inorganic Chemistry, 2015, 2015, 1552-1561.	2.0	6
15	Intercalation of 1, n -diols into strontium phenylphosphonate: How the shape of the host layers influences arrangement of the guest molecules. Journal of Colloid and Interface Science, 2015, 460, 181-188.	9.4	6
16	Molecular modeling of surface modification of Wyoming and Cheto montmorillonite by methylene blue. Journal of Molecular Modeling, 2009, 15, 1391-1396.	1.8	5
17	Alkaline-earth metal phenylphosphonates and their intercalation chemistry. Dalton Transactions, 2018, 47, 2867-2880.	3.3	5
18	Structural Arrangement of 4â€{4â€{Dimethylamino)phenylazo]pyridine Push–Pull Molecules in Acidic Layered Hosts Solved by Experimental and Calculation Methods. European Journal of Inorganic Chemistry, 2017, 2017, 115-123.	2.0	4

#	Article	IF	CITATIONS
19	Influence of 1,2-alkanediols on the structure of their intercalates with strontium phenylphosphonate solved by molecular simulation and experimental methods. Journal of Molecular Modeling, 2016, 22, 143.	1.8	3
20	How Intercalated Sodium, Copper, and Iron Cations Influence the Structural Arrangement of Zirconium Sulfophenylphosphonate Layers? Theoretical and Experimental Points of View. Journal of Physical Chemistry C, 2019, 123, 2488-2495.	3.1	3
21	Agglomeration of ZnS nanoparticles without capping additives at different temperatures. Open Chemistry, 2014, 12, 312-317.	1.9	2
22	Molecular modelling of zinc sulphide nanoparticles stabilized by cetyltrimethylammonium bromide. Journal of the Serbian Chemical Society, 2014, 79, 1545-1559.	0.8	0
23	How N-(pyridin-4-yl)pyridin-4-amine and its methyl and nitro derivatives are arranged in the interlayer space of zirconium sulfophenylphosphonate: a problem solved by experimental and calculation methods. Journal of Computer-Aided Molecular Design, 2020, 34, 683-695.	2.9	0