Jin Woo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9214328/publications.pdf

Version: 2024-02-01

		236612	155451
56	3,153	25	55
papers	citations	h-index	g-index
56	56	56	4634
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 2012, 33, 3824-3834.	5.7	560
2	Rapid Fabrication of Complex 3D Extracellular Microenvironments by Dynamic Optical Projection Stereolithography. Advanced Materials, 2012, 24, 4266-4270.	11.1	302
3	Bone regeneration using a microstereolithography-produced customized poly(propylene) Tj ETQq1 1 0.784314 i Biomaterials, 2011, 32, 744-752.	rgBT /Over 5.7	rlock 10 Tf 50 239
4	Carbon nanotubes as cancer therapeutic carriers and mediators. International Journal of Nanomedicine, 2016, Volume 11, 5163-5185.	3.3	193
5	Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication, 2016, 8, 015007.	3.7	193
6	Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. Journal of Materials Science: Materials in Medicine, 2009, 20, 271-279.	1.7	129
7	Threeâ€Dimensional Polymer Constructs Exhibiting a Tunable Negative Poisson's Ratio. Advanced Functional Materials, 2011, 21, 2712-2720.	7.8	128
8	Cancer cell migration within 3D layer-by-layer microfabricated photocrosslinked PEG scaffolds with tunable stiffness. Biomaterials, 2012, 33, 7064-7070.	5.7	107
9	Development of nano- and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectronic Engineering, 2009, 86, 1465-1467.	1.1	100
10	Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology. Journal of Materials Science: Materials in Medicine, 2010, 21, 3195-3205.	1.7	77
11	A three-dimensional polymer scaffolding material exhibiting a zero Poisson's ratio. Soft Matter, 2012, 8, 4946.	1.2	77
12	Spatial tuning of negative and positive Poisson's ratio in a multi-layer scaffold. Acta Biomaterialia, 2012, 8, 2587-2594.	4.1	70
13	Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using microâ€stereolithography technology. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 1-9.	1.6	69
14	Synthesis and Characterization of Poly(Ethylene Glycol) Based Thermo-Responsive Hydrogels for Cell Sheet Engineering. Materials, 2016, 9, 854.	1.3	67
15	3D scaffold fabrication with PPF/DEF using micro-stereolithography. Microelectronic Engineering, 2007, 84, 1702-1705.	1.1	63
16	Three-dimensional scaffolding to investigate neuronal derivatives of human embryonic stem cells. Biomedical Microdevices, 2012, 14, 829-838.	1.4	60
17	Solid Free-form Fabrication Technology and Its Application to Bone Tissue Engineering. International Journal of Stem Cells, 2010, 3, 85-95.	0.8	60
18	Applications of Functionalized Carbon Nanotubes for the Therapy and Diagnosis of Cancer. Polymers, 2017, 9, 13.	2.0	54

#	Article	IF	Citations
19	A Tubular Biomaterial Construct Exhibiting a Negative Poisson's Ratio. PLoS ONE, 2016, 11, e0155681.	1.1	41
20	Effect of Pore Architecture on Oxygen Diffusion in 3D Scaffolds for Tissue Engineering. Journal of Biomechanical Engineering, 2010, 132, 104506.	0.6	35
21	Development of a heat labile antibiotic eluting 3D printed scaffold for the treatment of osteomyelitis. Scientific Reports, 2020, 10, 7554.	1.6	35
22	Hybrid scaffold composed of hydrogel/3D-framework and its application as a dopamine delivery system. Journal of Controlled Release, 2014, 175, 10-16.	4.8	31
23	Optimization of Electrospun Poly(caprolactone) Fiber Diameter for Vascular Scaffolds to Maximize Smooth Muscle Cell Infiltration and Phenotype Modulation. Polymers, 2019, 11, 643.	2.0	31
24	Simulated microgravity with floating environment promotes migration of non-small cell lung cancers. Scientific Reports, 2019, 9, 14553.	1.6	29
25	Auxetic Structures for Tissue Engineering Scaffolds and Biomedical Devices. Materials, 2021, 14, 6821.	1.3	27
26	Development of a 3D-Printed Drug-Eluting Stent for Treating Obstructive Salivary Gland Disease. ACS Biomaterials Science and Engineering, 2019, 5, 3572-3581.	2.6	26
27	SERPINB2 Is a Novel Indicator of Cancer Stem Cell Tumorigenicity in Multiple Cancer Types. Cancers, 2019, 11, 499.	1.7	26
28	Evaluation of cell proliferation and differentiation on a poly(propylene fumarate) 3D scaffold treated with functional peptides. Journal of Materials Science, 2011, 46, 5282-5287.	1.7	25
29	Development of arginine-glycine-aspartate-immobilized 3D printed poly(propylene fumarate) scaffolds for cartilage tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 917-931.	1.9	24
30	SERPINB2 is a novel indicator of stem cell toxicity. Cell Death and Disease, 2018, 9, 724.	2.7	20
31	Development of a flexible 3D printed scaffold with a cell-adhesive surface for artificial trachea. Biomedical Materials (Bristol), 2019, 14, 055001.	1.7	20
32	Development of a Multi-Layer Skin Substitute Using Human Hair Keratinic Extract-Based Hybrid 3D Printing. Polymers, 2021, 13, 2584.	2.0	20
33	Fabrication and tissue engineering application of a 3D PPF/DEF scaffold using Blu-ray based 3D printing system. Journal of Mechanical Science and Technology, 2017, 31, 2581-2587.	0.7	19
34	Development of a novel dual reproductive organ on a chip: recapitulating bidirectional endocrine crosstalk between the uterine endometrium and the ovary. Biofabrication, 2021, 13, 015001.	3.7	18
35	PCL/Sodium-Alginate Based 3D-Printed Dual Drug Delivery System with Antibacterial Activity for Osteomyelitis Therapy. Gels, 2022, 8, 163.	2.1	18
36	Estimation of cell proliferation by various peptide coating at the PPF/DEF 3D scaffold. Microelectronic Engineering, 2009, 86, 1451-1454.	1.1	16

#	Article	IF	CITATIONS
37	Development of a bone reconstruction technique using a solid freeâ€form fabrication (SFF)â€based drug releasing scaffold and adiposeâ€derived stem cells. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1865-1875.	2.1	16
38	3D Nanoprinting Technologies for Tissue Engineering Applications. Journal of Nanomaterials, 2015, 2015, 1-14.	1.5	16
39	Fluid-dynamic optimality in the generation-averaged length-to-diameter ratio of the human bronchial tree. Medical and Biological Engineering and Computing, 2007, 45, 1071-1078.	1.6	14
40	Motility Improvement of Biomimetic Trachea Scaffold via Hybrid 3D-Bioprinting Technology. Polymers, 2021, 13, 971.	2.0	13
41	Monte-Carlo Simulation of Turbulent Deposition of Charged Particles in a Plate-Plate Electrostatic Precipitator. Aerosol Science and Technology, 1996, 25, 31-45.	1.5	12
42	3D Spheroid Cultures of Stem Cells and Exosome Applications for Cartilage Repair. Life, 2022, 12, 939.	1.1	11
43	Analysis of Osteoblast Differentiation on Polymer Thin Films Embedded with Carbon Nanotubes. PLoS ONE, 2015, 10, e0129856.	1.1	9
44	Two Phase Modulation of NH4+ Entry and Clâ^'/HCO3- Exchanger in Submandibular Glands Cells by Dexmedetomidine. Frontiers in Physiology, 2017, 8, 86.	1.3	9
45	Development of a 3D subcutaneous construct containing insulin-producing beta cells using bioprinting. Bio-Design and Manufacturing, 2022, 5, 265-276.	3.9	9
46	Development of Multi-layer Tubular Vascular Scaffold to Enhance Compliance by Exhibiting a Negative Poisson's Ratio. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 841-853.	2.7	8
47	A Novel Strategy for Creating an Antibacterial Surface Using a Highly Efficient Electrospray-Based Method for Silica Deposition. International Journal of Molecular Sciences, 2022, 23, 513.	1.8	8
48	Feasibility of a 3D Printed Patient-Specific Model System to Determine Hemodynamic Energy Delivery During Extracorporeal Circulation. ASAIO Journal, 2018, 64, 309-317.	0.9	4
49	Development of a Resin Curing Model for UV Nanoimprint. Journal of Nanoscience and Nanotechnology, 2005, 5, 1637-1642.	0.9	3
50	3D Printing Technology and Its Applications for Tissue/Organ Regeneration. The Journal of the Korean Society for Transplantation, 2015, 29, 187-193.	0.2	3
51	Targeting Cancer Stem Cell Markers or Pathways: A Potential Therapeutic Strategy for Oral Cancer Treatment. International Journal of Stem Cells, 2021, 14, 386-399.	0.8	3
52	Nonequilibrium Reynolds stress for the dispersed phase of solid particles in turbulent flows. Physics of Fluids, 2002, 14, 2898-2916.	1.6	2
53	Gustatory sweating after submandibular gland excision. Otolaryngology - Head and Neck Surgery, 2010, 143, 845-846.	1.1	2
54	A nano-scale probing system with a gold nano-dot array for measurement of a single biomolecular interaction force. RSC Advances, 2015, 5, 105727-105730.	1.7	1

#	Article	lF	CITATIONS
55	Which Variables Should be Considered as Confounders of Florescence Intensity During Indocyanine Green Bronchoscopy?. Annals of Thoracic Surgery, 2016, 102, 2136-2137.	0.7	1
56	Initial Graphite Disorder of Carbon Lattice Structures Increase Surface Hydrophilicity and Protein Adsorption. Journal of Nanoscience and Nanotechnology, 2016, 16, 11896-11902.	0.9	0