Hao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/92140/publications.pdf

Version: 2024-02-01

		109321	1	114465
73	4,054 citations	35		63
papers	citations	h-index		g-index
72	72	72		4621
73	73	73		4631
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Mobility and settlement dynamics of Large Cutting Tool makers in the subtropical forests of South China: A simulated ecological approach. Journal of Archaeological Science: Reports, 2022, 42, 103353.	0.5	2
2	Population dynamics during the Acheulean at ~0.8†Ma in East and Southeast Asia: Considering the influence of two geological cataclysms. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562, 109927.	2.3	5
3	Refining the Understanding of Large Cutting Tool Technology in the Baise Basin, South China. Lithic Technology, 2021, 46, 87-103.	1.1	5
4	Novel fluorescent probes based on nitrogen–sulfur co-doped carbon dots for chromium ion detection. New Journal of Chemistry, 2021, 45, 4828-4834.	2.8	10
5	Characterizing the shape of Large Cutting Tools from the Baise Basin (South China) using a 3D geometric morphometric approach. Journal of Archaeological Science: Reports, 2021, 36, 102820.	0.5	4
6	On the Vertex-Connectivity of an Uncertain Random Graph. IEEE Access, 2020, 8, 85504-85514.	4.2	7
7	Long-wavelength excitation of carbon dots as the probe for real-time imaging of the living-cell cycle process. Sensors and Actuators B: Chemical, 2020, 311, 127891.	7.8	25
8	On the Edge-Connectivity of an Uncertain Random Graph. IEEE Access, 2020, 8, 59126-59134.	4.2	6
9	The design of room-temperature-phosphorescent carbon dots and their application as a security ink. Journal of Materials Chemistry C, 2019, 7, 10605-10612.	5. 5	88
10	Engraved bones from the archaic hominin site of Lingjing, Henan Province. Antiquity, 2019, 93, 886-900.	1.0	27
11	Biotoxicity of degradable carbon dots towards microalgae <i>Chlorella vulgaris</i> Environmental Science: Nano, 2019, 6, 3316-3323.	4.3	28
12	Enhanced RuBisCO activity and promoted dicotyledons growth with degradable carbon dots. Nano Research, 2019, 12, 1585-1593.	10.4	73
13	Negatively Charged Carbon Nanodots with Bacteria Resistance Ability for Highâ€Performance Antibiofilm Formation and Anticorrosion Coating Design. Small, 2019, 15, e1900007.	10.0	46
14	Further Evidence of Organic Soft Hammer Percussion and Pressure Retouch from Lingjing (Xuchang,) Tj ETQq0 C	0 0 <u>f</u> gBT /C	overlock 10 Tf
15	Biocompatible carbon dots with low-saturation-intensity and high-photobleaching-resistance for STED nanoscopy imaging of the nucleolus and tunneling nanotubes in living cells. Nano Research, 2019, 12, 3075-3084.	10.4	73
16	Technological behavior of the early Late Pleistocene archaic humans at Lingjing (Xuchang, China). Archaeological and Anthropological Sciences, 2019, 11, 3477-3490.	1.8	17
17	Synthesis and anti-HCV activity of \hat{l}^2 -d- $2\hat{a}\in \hat{l}^2$ -deoxy- $2\hat{a}\in \hat{l}^2$ - \hat{l} -chloro- $2\hat{a}\in \hat{l}^2$ - \hat{l} -fluoro and \hat{l}^2 -d- $2\hat{a}\in \hat{l}^2$ -deoxy- $2\hat{a}\in \hat{l}$ -bronucleosides and their phosphoramidate prodrugs. Bioorganic and Medicinal Chemistry, 2019, 27, 664-676.	no-2′-β 3 . 0	2-fluoro 9
18	Lithic production strategies during the late Middle Pleistocene at Dali, Shaanxi Province, China: implications for understanding late archaic humans. Archaeological and Anthropological Sciences, 2019, 11, 1701-1712.	1.8	5

#	Article	IF	CITATIONS
19	What is currently (un)known about the Chinese Acheulean, with implications for hypotheses on the earlier dispersal of hominids. Comptes Rendus - Palevol, 2018, 17, 120-130.	0.2	18
20	Carbon dots promote the growth and photosynthesis of mung bean sprouts. Carbon, 2018, 136, 94-102.	10.3	182
21	Chiral evolution of carbon dots and the tuning of laccase activity. Nanoscale, 2018, 10, 2333-2340.	5.6	68
22	CoO and g-C3N4 complement each other for highly efficient overall water splitting under visible light. Applied Catalysis B: Environmental, 2018, 226, 412-420.	20.2	176
23	Handaxes in South Africa: Two case studies in the early and later Acheulean. Quaternary International, 2018, 480, 29-42.	1.5	23
24	Lithic raw material quality of Middle Pleistocene artefacts from the Han River, Danjiangkou Reservoir Region, central China. Quaternary International, 2018, 480, 141-151.	1.5	5
25	Degradable Carbon Dots with Broad-Spectrum Antibacterial Activity. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26936-26946.	8.0	246
26	Carbon Dots Enhance the Nitrogen Fixation Activity of Azotobacter Chroococcum. ACS Applied Materials & Samp; Interfaces, 2018, 10, 16308-16314.	8.0	57
27	Multifunctional carbon dot for lifetime thermal sensing, nucleolus imaging and antialgal activity. Journal of Materials Chemistry B, 2018, 6, 5708-5717.	5.8	32
28	Impacts of Carbon Dots on Rice Plants: Boosting the Growth and Improving the Disease Resistance. ACS Applied Bio Materials, 2018, 1, 663-672.	4.6	143
29	One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth. Nanoscale, 2018, 10, 12734-12742.	5.6	128
30	Discovery of circa 115,000-year-old bone retouchers at Lingjing, Henan, China. PLoS ONE, 2018, 13, e0194318.	2.5	33
31	Control Strategy on Two-/Four-Electron Pathway of Water Splitting by Multidoped Carbon Based Catalysts. ACS Catalysis, 2017, 7, 1637-1645.	11.2	66
32	Achieving electroreduction of CO ₂ to CH ₃ OH with high selectivity using a pyriteâ€"nickel sulfide nanocomposite. RSC Advances, 2017, 7, 1376-1381.	3.6	60
33	N,S co-doped carbon dots as a stable bio-imaging probe for detection of intracellular temperature and tetracycline. Journal of Materials Chemistry B, 2017, 5, 3293-3299.	5.8	117
34	Fluorescent carbon dots with tunable negative charges for bio-imaging in bacterial viability assessment. Carbon, 2017, 120, 95-102.	10.3	65
35	Pyridine derivative-induced fluorescence in multifunctional modified carbon dots and their application in thermometers. Journal of Materials Chemistry B, 2017, 5, 3964-3969.	5.8	18
36	Simultaneous enzymatic activity modulation and rapid determination of enzyme kinetics by highly crystalline graphite dots. Nanoscale, 2017, 9, 8410-8417.	5.6	12

#	Article	IF	Citations
37	Carbon Dots as Fillers Inducing Healing/Selfâ∈Healing and Anticorrosion Properties in Polymers. Advanced Materials, 2017, 29, 1701399.	21.0	142
38	Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting. Applied Catalysis B: Environmental, 2017, 216, 114-121.	20.2	217
39	High-bright fluorescent carbon dot as versatile sensing platform. Talanta, 2017, 174, 265-273.	5.5	35
40	New Insight of Water-Splitting Photocatalyst: H ₂ O ₂ -Resistance Poisoning and Photothermal Deactivation in Sub-micrometer CoO Octahedrons. ACS Applied Materials & Samp; Interfaces, 2017, 9, 20585-20593.	8.0	51
41	Experimental flaking in the Danjiangkou Reservoir Region (central China): A rare case of bipolar blanks in the Acheulean. Journal of Archaeological Science: Reports, 2017, 13, 26-35.	0.5	4
42	Hydroxyl-Group-Dominated Graphite Dots Reshape Laser Desorption/Ionization Mass Spectrometry for Small Biomolecular Analysis and Imaging. ACS Nano, 2017, 11, 9500-9513.	14.6	79
43	A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas. Nature Communications, 2017, 8, 1828.	12.8	140
44	Oxygen Containing Functional Groups Dominate the Electrochemiluminescence of Pristine Carbon Dots. Journal of Physical Chemistry C, 2017, 121, 27546-27554.	3.1	31
45	Carbon dots decorated the exposing high-reactive (111) facets CoO octahedrons with enhanced photocatalytic activity and stability for tetracycline degradation under visible light irradiation. Applied Catalysis B: Environmental, 2017, 219, 36-44.	20.2	96
46	Facile fabrication of a CoO/g-C ₃ N ₄ p–n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light. Catalysis Science and Technology, 2017, 7, 3325-3331.	4.1	224
47	Fluorescent carbon dots with highly negative charges as a sensitive probe for real-time monitoring of bacterial viability. Journal of Materials Chemistry B, 2017, 5, 6008-6015.	5.8	56
48	Concentrations dominated membrane permeability variation by fullerol nanoparticles on a single living HeLa cell. Journal of Materials Chemistry B, 2016, 4, 5755-5760.	5.8	0
49	The symmetry of handaxes from the Danjiangkou Reservoir Region (central China): A methodological consideration. Quaternary International, 2016, 400, 65-72.	1.5	18
50	Large Cutting Tools from the Danjiangkou Reservoir Region, central China: Comparisons and contrasts with western and south Asian Acheulean. Quaternary International, 2016, 400, 58-64.	1.5	14
51	Quantifying the Reduction Intensity of Handaxes with 3D Technology: A Pilot Study on Handaxes in the Danjiangkou Reservoir Region, Central China. PLoS ONE, 2015, 10, e0135613.	2.5	23
52	Carbon dots from PEG for highly sensitive detection of levodopa. Journal of Materials Chemistry B, 2015, 3, 2378-2387.	5.8	52
53	Size-dependent and real-time effect of SiO2 nanoparticles on a single living HeLa Cell's membrane permeability. Journal of Materials Chemistry B, 2015, 3, 1198-1203.	5.8	7
54	Luminescent Coordination Polymers for Highly Sensitive Detection of Nitrobenzene. Crystal Growth and Design, 2015, 15, 4355-4362.	3.0	26

#	Article	IF	Citations
55	A practical and highly sensitive C ₃ N ₄ -TYR fluorescent probe for convenient detection of dopamine. Nanoscale, 2015, 7, 12068-12075.	5.6	30
56	Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection. Carbon, 2015, 91, 66-75.	10.3	161
57	Tuning Laccase Catalytic Activity with Phosphate Functionalized Carbon Dots by Visible Light. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10004-10012.	8.0	95
58	Fluorescent carbon dots for sensitive determination and intracellular imaging of zinc(II) ion. Mikrochimica Acta, 2015, 182, 2443-2450.	5.0	45
59	Visible-Light-Induced Effects of Au Nanoparticle on Laccase Catalytic Activity. ACS Applied Materials & Laccase Catalytic Activity. ACS Applied & Laccase Catalytic Activity.	8.0	38
60	Fluorescent N-Doped Carbon Dots as <i>in Vitro</i> and <i>in Vivo</i> Nanothermometer. ACS Applied Materials & Double Samp; Interfaces, 2015, 7, 27324-27330.	8.0	122
61	Re-examination of the morphological variability of East Asian handaxes from a comparative perspective. World Archaeology, 2014, 46, 705-733.	1.1	18
62	Rethinking the "Acheulean―in East Asia: Evidence from recent investigations in the Danjiangkou Reservoir Region, central China. Quaternary International, 2014, 347, 163-175.	1.5	36
63	Highly sensitive, stable, and precise detection of dopamine with carbon dots/tyrosinase hybrid as fluorescent probe. RSC Advances, 2014, 4, 46437-46443.	3.6	38
64	One-step catalase controllable degradation of C ₃ N ₄ for N-doped carbon dot green fabrication and their bioimaging applications. Journal of Materials Chemistry B, 2014, 2, 5768.	5.8	54
65	Large cutting tools in the Danjiangkou Reservoir Region, central China. Journal of Human Evolution, 2014, 76, 129-153.	2.6	44
66	Carbon dots for photoswitching enzyme catalytic activity. Journal of Materials Chemistry B, 2014, 2, 5652.	5.8	34
67	Quantitative and real-time effects of carbon quantum dots on single living HeLa cell membrane permeability. Nanoscale, 2014, 6, 5116.	5.6	61
68	Convenient and sensitive detection of norfloxacin with fluorescent carbon dots. Journal of Materials Chemistry B, 2014, 2, 7964-7970.	5.8	55
69	The Middle Pleistocene handaxe site of Shuangshu in the Danjiangkou Reservoir Region, central China. Journal of Archaeological Science, 2014, 52, 391-409.	2.4	28
70	High-bright fluorescent carbon dots and their application in selective nucleoli staining. Journal of Materials Chemistry B, 2014, 2, 5077.	5.8	45
71	Nonporous homochiral copper-based coordination polymers for enantioselective recognition and electrocatalysis. Inorganic Chemistry Communication, 2014, 40, 31-34.	3.9	10
72	Homochiral metal–organic porous materials for enantioselective recognition and electrocatalysis. CrystEngComm, 2013, 15, 3288.	2.6	14

#	Article	IF	CITATIONS
73	A cobalt-based 3D porous framework with excellent catalytic ability for the selective oxidation of cis-cyclooctene. Dalton Transactions, 2013, 42, 9423.	3.3	17