
Pepper J Schedin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9213884/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mammary collagen is under reproductive control with implications for breast cancer. Matrix Biology, 2022, 105, 104-126.	1.5	9
2	Molecular and Clinical Characterization of Postpartum-Associated Breast Cancer in the Carolina Breast Cancer Study Phase l–III, 1993–2013. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 561-568.	1.1	3
3	Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data. Nature Biotechnology, 2022, 40, 527-538.	9.4	128
4	Diet-Driven Inflammation and Insulinemia and Risk of Interval Breast Cancer. Nutrition and Cancer, 2022, , 1-15.	0.9	1
5	Overall survival is the lowest among young women with postpartum breast cancer. European Journal of Cancer, 2022, 168, 119-127.	1.3	10
6	Preventing ovariectomy-induced weight gain decreases tumor burden in rodent models of obesity and postmenopausal breast cancer. Breast Cancer Research, 2022, 24, .	2.2	6
7	Body Mass Index Is Inversely Associated with Risk of Postmenopausal Interval Breast Cancer: Results from the Women's Health Initiative. Cancers, 2022, 14, 3228.	1.7	0
8	A multiplex implantable microdevice assay identifies synergistic combinations of cancer immunotherapies and conventional drugs. Nature Biotechnology, 2022, 40, 1823-1833.	9.4	17
9	Postpartum breast cancer: mechanisms underlying its worse prognosis, treatment implications, and fertility preservation. International Journal of Gynecological Cancer, 2021, 31, 412-422.	1.2	14
10	Immune Milieu Established by Postpartum Liver Involution Promotes Breast Cancer Liver Metastasis. Cancers, 2021, 13, 1698.	1.7	7
11	The definition of pregnancy-associated breast cancer is outdated and should no longer be used. Lancet Oncology, The, 2021, 22, 753-754.	5.1	57
12	Vitamin D as a Potential Preventive Agent For Young Women's Breast Cancer. Cancer Prevention Research, 2021, 14, 825-838.	0.7	7
13	Postpartum breast cancer has a distinct molecular profile that predicts poor outcomes. Nature Communications, 2021, 12, 6341.	5.8	19
14	Pregnancy and weaning regulate human maternal liver size and function. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
15	Comparison of Mortality Among Participants of Women's Health Initiative Trials With Screening-Detected Breast Cancers vs Interval Breast Cancers. JAMA Network Open, 2020, 3, e207227.	2.8	22
16	Cover Image, Volume 59, Issue 7. Molecular Carcinogenesis, 2020, 59, i.	1.3	0
17	Extracellular vesicles from young women's breast cancer patients drive increased invasion of non-malignant cells via the Focal Adhesion Kinase pathway: a proteomic approach. Breast Cancer Research, 2020, 22, 128.	2.2	21
18	Erythrocyte membrane fatty acids and breast cancer risk by tumor tissue expression of immuno-inflammatory markers and fatty acid synthase: a nested case-control study. Breast Cancer Research, 2020, 22, 78.	2.2	9

#	Article	IF	CITATIONS
19	Characterization of weaning-induced breast involution in women: implications for young women's breast cancer. Npj Breast Cancer, 2020, 6, 55.	2.3	24
20	Mucosal Immunity and Liver Metabolism in the Complex Condition of Lactation Insufficiency. Journal of Human Lactation, 2020, 36, 582-590.	0.8	4
21	S-nitrosylated and non-nitrosylated COX2 have differential expression and distinct subcellular localization in normal and breast cancer tissue. Npj Breast Cancer, 2020, 6, 62.	2.3	7
22	Exclusive Breastfeeding Rates at 6 Weeks Postpartum as a Function of Preconception Body Mass Index Are Not Impacted by Postpartum Obstetrical Practices or Routines. Breastfeeding Medicine, 2020, 15, 458-464.	0.8	4
23	Loss of myoepithelial calponinâ€1 characterizes highâ€risk ductal carcinoma in situ cases, which are further stratified by T cell composition. Molecular Carcinogenesis, 2020, 59, 701-712.	1.3	11
24	Postpartum Involution and Cancer: An Opportunity for Targeted Breast Cancer Prevention and Treatments?. Cancer Research, 2020, 80, 1790-1798.	0.4	41
25	NHERF1 is Required for Localization of PMCA2 and Suppression of Early Involution in the Female Lactating Mammary Gland. Endocrinology, 2019, 160, 1797-1810.	1.4	8
26	RNA-seq from archival FFPE breast cancer samples: molecular pathway fidelity and novel discovery. BMC Medical Genomics, 2019, 12, 195.	0.7	35
27	Association Between Postpartum Breast Cancer Diagnosis and Metastasis and the Clinical Features Underlying Risk. JAMA Network Open, 2019, 2, e186997.	2.8	72
28	Semaphorin 7A Promotes Macrophage-Mediated Lymphatic Remodeling during Postpartum Mammary Gland Involution and in Breast Cancer. Cancer Research, 2018, 78, 6473-6485.	0.4	50
29	lbuprofen supports macrophage differentiation, T cell recruitment, and tumor suppression in a model of postpartum breast cancer. , 2018, 6, 98.		43
30	A method for quantification of calponin expression in myoepithelial cells in immunohistochemical images of ductal carcinoma in situ. , 2018, 2018, 796-799.		2
31	RNA-Seq and Expression Arrays: Selection Guidelines for Genome-Wide Expression Profiling. Methods in Molecular Biology, 2018, 1783, 7-33.	0.4	8
32	Metformin inhibits stromal aromatase expression and tumor progression in a rodent model of postmenopausal breast cancer. Breast Cancer Research, 2018, 20, 50.	2.2	39
33	Mucosal Immunity in the Female Murine Mammary Gland. Journal of Immunology, 2018, 201, 734-746.	0.4	58
34	Multiplex Immunohistochemistry Provides Insight Into Crossâ€Talk Between Myoepithelial And Immune Cells In Ductal Carcinoma In Situ (DCIS) Progression. FASEB Journal, 2018, 32, 818.5.	0.2	0
35	Mammary extracellular matrix directs differentiation of testicular and embryonic stem cells to form functional mammary glands in vivo. Scientific Reports, 2017, 7, 40196.	1.6	36
36	Metformin Accumulation Correlates with Organic Cation Transporter 2 Protein Expression and Predicts Mammary Tumor Regression <i>In Vivo</i> . Cancer Prevention Research, 2017, 10, 198-207.	0.7	37

#	Article	IF	CITATIONS
37	IFPA meeting 2016 workshop report III: Decidua-trophoblast interactions; trophoblast implantation and invasion; immunology at the maternal-fetal interface; placental inflammation. Placenta, 2017, 60, S15-S19.	0.7	9
38	The Rodent Liver Undergoes Weaning-Induced Involution and Supports Breast Cancer Metastasis. Cancer Discovery, 2017, 7, 177-187.	7.7	42
39	The Androgen Receptor Supports Tumor Progression After the Loss of Ovarian Function in a Preclinical Model of Obesity and Breast Cancer. Hormones and Cancer, 2017, 8, 269-285.	4.9	14
40	Mammary Gland Involution Provides a Unique Model to Study the TGF-Î ² Cancer Paradox. Journal of Clinical Medicine, 2017, 6, 10.	1.0	24
41	Physiologically activated mammary fibroblasts promote postpartum mammary cancer. JCI Insight, 2017, 2, e89206.	2.3	39
42	Quantitative extracellular matrix proteomics to study mammary and liver tissue microenvironments. International Journal of Biochemistry and Cell Biology, 2016, 81, 223-232.	1.2	89
43	Myoepithelial cells in lobular carcinoma in situ: distribution and immunophenotype. Human Pathology, 2016, 55, 126-134.	1.1	9
44	A Portal Vein Injection Model to Study Liver Metastasis of Breast Cancer. Journal of Visualized Experiments, 2016, , .	0.2	31
45	COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Research, 2016, 18, 35.	2.2	94
46	Breast cancer risk factor associations differ for pure versus invasive carcinoma with an in situ component in case–control and case–case analyses. Cancer Causes and Control, 2016, 27, 183-198.	0.8	10
47	Important Role of Menarche in Development of Estrogen Receptor–Negative Breast Cancer in African American Women. Journal of the National Cancer Institute, 2015, 107, .	3.0	47
48	Wound healingâ€like immune program facilitates postpartum mammary gland involution and tumor progression. International Journal of Cancer, 2015, 136, 1803-1813.	2.3	112
49	Tumor mechanics and metabolic dysfunction. Free Radical Biology and Medicine, 2015, 79, 269-280.	1.3	95
50	Molecular Phenotype of Breast Cancer According to Time Since Last Pregnancy in a Large Cohort of Young Women. Oncologist, 2015, 20, 713-718.	1.9	19
51	Myoepithelial Cell Differentiation Markers in Ductal Carcinoma in Situ Progression. American Journal of Pathology, 2015, 185, 3076-3089.	1.9	60
52	Parity, Lactation, and Breast Cancer Subtypes in African American Women: Results from the AMBER Consortium. Journal of the National Cancer Institute, 2014, 106, .	3.0	162
53	Postpartum breast involution reveals regression of secretory lobules mediated by tissue-remodeling. Breast Cancer Research, 2014, 16, R31.	2.2	71
54	Mammary Gland Involution as an Immunotherapeutic Target for Postpartum Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2014, 19, 213-228.	1.0	40

#	Article	IF	CITATIONS
55	Physiological COX-2 Expression in Breast Epithelium Associates with COX-2 Levels in Ductal Carcinoma in Situ and Invasive Breast Cancer in Young Women. American Journal of Pathology, 2014, 184, 1219-1229.	1.9	33
56	Cyclooxygenase-2–dependent lymphangiogenesis promotes nodal metastasis of postpartum breast cancer. Journal of Clinical Investigation, 2014, 124, 3901-3912.	3.9	110
57	Genomic Signatures of Pregnancy-Associated Breast Cancer Epithelia and Stroma and their Regulation by Estrogens and Progesterone. Hormones and Cancer, 2013, 4, 140-153.	4.9	46
58	Collagen architecture in pregnancy-induced protection from breast cancer. Journal of Cell Science, 2013, 126, 4108-10.	1.2	87
59	Postpartum Remodeling, Lactation, and Breast Cancer Risk: Summary of a National Cancer Institute–Sponsored Workshop. Journal of the National Cancer Institute, 2013, 105, 166-174.	3.0	84
60	Developmental windows of breast cancer risk provide opportunities for targeted chemoprevention. Experimental Cell Research, 2013, 319, 1671-1678.	1.2	39
61	Postpartum diagnosis demonstrates a high risk for metastasis and merits an expanded definition of pregnancy-associated breast cancer. Breast Cancer Research and Treatment, 2013, 138, 549-559.	1.1	175
62	Mechanism and preclinical prevention of increased breast cancer risk caused by pregnancy. ELife, 2013, 2, e00996.	2.8	42
63	Abstract B090: Collagen organization implicated in tumor dormancy. , 2013, , .		0
64	Abstract B099: Postpartum mammary gland involution promotes COX-2 dependent tumor cell invasion of lymphatics. , 2013, , .		0
65	Could NSAIDs become a preventative therapy in pregnancy-associated breast cancer?. Breast Cancer Management, 2012, 1, 39-46.	0.2	3
66	Emerging targets for the prevention of pregnancy-associated breast cancer. Cell Cycle, 2012, 11, 639-640.	1.3	17
67	Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development (Cambridge), 2012, 139, 269-275.	1.2	127
68	Rat Mammary Extracellular Matrix Composition and Response to Ibuprofen Treatment During Postpartum Involution by Differential GeLC–MS/MS Analysis. Journal of Proteome Research, 2012, 11, 4894-4905.	1.8	31
69	Alterations in mast cell frequency and relationship to angiogenesis in the rat mammary gland during windows of physiologic tissue remodeling. Developmental Dynamics, 2012, 241, 890-900.	0.8	23
70	Pregnancyâ€associated breast cancer. Cancer, 2012, 118, 3226-3228.	2.0	60
71	Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2. Nature Medicine, 2011, 17, 1109-1115.	15.2	318
72	Mammary Gland ECM Remodeling, Stiffness, and Mechanosignaling in Normal Development and Tumor Progression. Cold Spring Harbor Perspectives in Biology, 2011, 3, a003228-a003228.	2.3	373

#	Article	IF	CITATIONS
73	Isolation of Mammary-Specific Extracellular Matrix to Assess Acute Cell-ECM Interactions in 3D Culture. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 353-364.	1.0	20
74	Extracellular Matrix Composition Reveals Complex and Dynamic Stromal-Epithelial Interactions in the Mammary Gland. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 301-318.	1.0	97
75	Editorial: The Mammary Stroma in Normal Development and Function. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 275-277.	1.0	18
76	A Surprising Link Between the Energetics of Ovariectomyâ€induced Weight Gain and Mammary Tumor Progression in Obese Rats. Obesity, 2010, 18, 696-703.	1.5	23
77	Effect of the estrous cycle and surgical ovariectomy on energy balance, fuel utilization, and physical activity in lean and obese female rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R1634-R1642.	0.9	42
78	Quantitative Analysis of Three-Dimensional Human Mammary Epithelial Tissue Architecture Reveals a Role for Tenascin-C in Regulating c-Met Function. American Journal of Pathology, 2010, 176, 827-838.	1.9	15
79	Alternatively Activated Macrophages and Collagen Remodeling Characterize the Postpartum Involuting Mammary Gland across Species. American Journal of Pathology, 2010, 176, 1241-1255.	1.9	251
80	An In-solution Ultrasonication-assisted Digestion Method for Improved Extracellular Matrix Proteome Coverage. Molecular and Cellular Proteomics, 2009, 8, 1648-1657.	2.5	90
81	Macrophages in Breast Cancer: Do Involution Macrophages Account for the Poor Prognosis of Pregnancy-Associated Breast Cancer?. Journal of Mammary Gland Biology and Neoplasia, 2009, 14, 145-157.	1.0	63
82	Pregnancy and Breast Cancer: when They Collide. Journal of Mammary Gland Biology and Neoplasia, 2009, 14, 87-98.	1.0	181
83	Breaking down barriers: the importance of the stromal microenvironment in acquiring invasiveness in young women's breast cancer. Breast Cancer Research, 2009, 11, 102.	2.2	23
84	Tamoxifen induces pleiotrophic changes in mammary stroma resulting in extracellular matrix that suppresses transformed phenotypes. Breast Cancer Research, 2009, 11, R5.	2.2	57
85	Loss of Singleminded-2s in the Mouse Mammary Gland Induces an Epithelial-Mesenchymal Transition Associated with Up-Regulation of Slug and Matrix Metalloprotease 2. Molecular and Cellular Biology, 2008, 28, 1936-1946.	1.1	82
86	Microenvironment of the Involuting Mammary Gland Mediates Mammary Cancer Progression. Journal of Mammary Gland Biology and Neoplasia, 2007, 12, 71-82.	1.0	135
87	Remodeling of the Mammary Microenvironment after Lactation Promotes Breast Tumor Cell Metastasis. American Journal of Pathology, 2006, 168, 608-620.	1.9	196
88	Pregnancy-associated breast cancer and metastasis. Nature Reviews Cancer, 2006, 6, 281-291.	12.8	382
89	ESX induces transformation and functional epithelial to mesenchymal transition in MCF-12A mammary epithelial cells. Oncogene, 2004, 23, 1766-1779.	2.6	56
90	Mammary ECM composition and function are altered by reproductive state. Molecular Carcinogenesis, 2004, 41, 207-220.	1.3	126

#	Article	IF	CITATIONS
91	Multistep tumorigenesis and the microenvironment. Breast Cancer Research, 2004, 6, 93-101.	2.2	87
92	Can breast cancer prevention strategies be tailored to biologic subtype and unique reproductive windows?. Journal of the National Cancer Institute, 0, , .	3.0	0