Govindan Sundararajan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9213878/publications.pdf

Version: 2024-02-01

151	7,217	44	77
papers	citations	h-index	g-index
153	153	153	4801
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surface and Coatings Technology, 2003, 167, 269-277.	2.2	430
2	Correlation between the characteristics of the mechanically mixed layer and wear behaviour of aluminium, Al-7075 alloy and Al-MMCs. Wear, 2000, 245, 22-38.	1.5	310
3	FeB/FeB phase transformation during SPS pack-boriding: Boride layer growth kinetics. Acta Materialia, 2005, 53, 2361-2368.	3.8	204
4	The sliding wear behaviour of Alî—,SiC particulate composites—I. Macrobehaviour. Acta Materialia, 1996, 44, 451-460.	3.8	200
5	The sliding wear behaviour of AlSiC particulate composites—II. The characterization of subsurface deformation and correlation with wear behaviour. Acta Materialia, 1996, 44, 461-473.	3.8	193
6	Solid particle erosion behaviour of metallic materials at room and elevated temperatures. Tribology International, 1997, 30, 339-359.	3.0	188
7	Influence of the pack thickness of the boronizing mixture on the boriding of steel. Surface and Coatings Technology, 2002, 149, 21-26.	2.2	183
8	A new model for the erosion of metals at normal incidence. Wear, 1983, 84, 237-258.	1.5	177
9	Geometrical features and metallurgical characteristics of Nd:YAG laser drilled holes in thick IN718 and Ti–6Al–4V sheets. Journal of Materials Processing Technology, 2002, 127, 83-95.	3.1	162
10	Influence of process parameters during pulsed Nd:YAG laser cutting of nickel-base superalloys. Journal of Materials Processing Technology, 2005, 170, 229-239.	3.1	146
11	The solid particle erosion of polymer matrix composites. Wear, 1994, 171, 149-161.	1.5	145
12	A comprehensive model for the solid particle erosion of ductile materials. Wear, 1991, 149, 111-127.	1.5	144
13	Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Applied Surface Science, 2014, 293, 229-247.	3.1	139
14	Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications. Processing and Application of Ceramics, 2012, 6, 21-36.	0.4	134
15	A comparative study of tribological behavior of microarc oxidation and hard-anodized coatings. Wear, 2006, 261, 1095-1101.	1.5	121
16	Erosion efficiency-a new parameter to characterize the dominant erosion micromechanism. Wear, 1990, 140, 369-381.	1.5	119
17	Effect of heat treatment on properties of cold sprayed nanocrystalline copper alumina coatings. Acta Materialia, 2007, 55, 4741-4751.	3.8	116
18	Influence of mode of electrodeposition, current density and saccharin on the microstructure and hardness of electrodeposited nanocrystalline nickel coatings. Surface and Coatings Technology, 2016, 291, 130-140.	2.2	112

#	Article	IF	CITATIONS
19	Processing–structure–property correlation and decarburization phenomenon in detonation sprayed WC–12Co coatings. Acta Materialia, 2008, 56, 5012-5026.	3.8	111
20	Effect of Process Parameters and Heat Treatments on Properties of Cold Sprayed Copper Coatings. Journal of Thermal Spray Technology, 2007, 16, 425-434.	1.6	110
21	Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications. Materials Chemistry and Physics, 2012, 135, 220-234.	2.0	99
22	The high speed sliding wear behaviour of boronized medium carbon steel. Surface and Coatings Technology, 1995, 73, 177-184.	2.2	98
23	The Corrosion Behavior of Cold Sprayed Zinc Coatings on Mild Steel Substrate. Journal of Thermal Spray Technology, 2013, 22, 463-470.	1.6	83
24	A dynamic indentation technique for the characterization of the high strain rate plastic flow behaviour of ductile metals and alloys. Journal of the Mechanics and Physics of Solids, 1991, 39, 243-271.	2.3	80
25	The influence of plate hardness on the ballistic penetration of thick steel plates. International Journal of Impact Engineering, 1995, 16, 293-320.	2.4	78
26	Effect of micro arc oxidation treatment on localized corrosion behaviour of AA7075 aluminum alloy in 3.5% NaCl solution. Transactions of Nonferrous Metals Society of China, 2012, 22, 700-710.	1.7	72
27	A statistical approach to determine process parameter impact in Nd:YAG laser drilling of IN718 and Ti-6Al-4V sheets. Optics and Lasers in Engineering, 2005, 43, 163-182.	2.0	70
28	Formation of hard tungsten boride layer by spark plasma sintering boriding. Thin Solid Films, 2005, 478, 232-237.	0.8	65
29	Abrasive wear behavior of detonation sprayed WC–12Co coatings: Influence of decarburization and abrasive characteristics. Wear, 2010, 268, 1387-1399.	1.5	65
30	Influence of microarc oxidation and hard anodizing on plain fatigue and fretting fatigue behaviour of Al–Mg–Si alloy. Surface and Coatings Technology, 2008, 202, 1462-1469.	2.2	64
31	Effect of Porosity on Structure, Young's Modulus, and Thermal Conductivity of SiC Foams by Direct Foaming and Gelcasting. Journal of the American Ceramic Society, 2017, 100, 312-322.	1.9	62
32	Influence of processing route on microstructure and mechanical properties of MgAl2O4 spinel. Ceramics International, 2010, 36, 473-482.	2.3	58
33	Influence of process variables on the quality of detonation gun sprayed alumina coatings. Surface and Coatings Technology, 2000, 123, 44-54.	2.2	57
34	Influence of heat treatment on microstructure and mechanical properties of pulse electrodeposited Ni-W alloy coatings. Surface and Coatings Technology, 2017, 319, 403-414.	2.2	57
35	The influence of erodent hardness on the erosion behavior of detonation sprayed WC-12Co coatings. Wear, 2011, 270, 903-913.	1.5	56
36	The influence of process parameters and heat treatment on the properties of cold sprayed silver coatings. Surface and Coatings Technology, 2011, 205, 4798-4807.	2.2	55

#	Article	IF	Citations
37	Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel–tungsten composite coatings. Applied Surface Science, 2016, 364, 264-272.	3.1	54
38	The Monkman-Grant relationship. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 112, 205-214.	2.6	53
39	The Influence of Powder Particle Velocity and Microstructure on the Properties of Cold Sprayed Copper Coatings. Journal of Thermal Spray Technology, 2011, 20, 1009-1021.	1.6	53
40	The depth of plastic deformation beneath eroded surfaces: The influence of impact angle and velocity, particle shape and material properties. Wear, 1991, 149, 129-153.	1.5	51
41	Sliding wear behavior of nanocrystalline nickel coatings: Influence of grain size. Wear, 2012, 296, 536-546.	1.5	50
42	Boriding of mild steel using the spark plasma sintering (SPS) technique. Surface and Coatings Technology, 2002, 157, 226-230.	2.2	49
43	The nature of the elastic rebound of a hard ball impacting on ductile, metallic target materials. Materials Science & Description of a hard ball impacting on ductile, metallic target materials. Materials Science & Description of a hard ball impacting on ductile, metallic target materials. Processing, 1990, 124, 133-140.	2.6	46
44	The energy absorbed during the oblique impact of a hard ball against ductile target materials. International Journal of Impact Engineering, 1990, 9, 343-358.	2.4	45
45	The oblique impact of a hard ball against ductile, semi-infinite target materials—experiment and analysis. International Journal of Impact Engineering, 1987, 6, 3-22.	2.4	44
46	An analysis of the erosion-oxidation interaction mechanisms. Wear, 1991, 145, 251-282.	1.5	44
47	A Comparative Study of Tribological Behavior of Plasma and D-Gun Sprayed Coatings under Different Wear Modes. Journal of Materials Engineering and Performance, 1998, 7, 343-351.	1.2	44
48	Evaluation of Parameters for Assessment of Inter-Splat Bond Strength in Cold-Sprayed Coatings. Journal of Thermal Spray Technology, 2010, 19, 1255-1266.	1.6	44
49	Influence of Li-doping on structural characteristics and photocatalytic activity of ZnO nano-powder formed in a novel solution pyro-hydrolysis route. Applied Surface Science, 2012, 259, 524-537.	3.1	44
50	The Elastic Modulus of Cold Spray Coatings: Influence of Inter-splat Boundary Cracking. Journal of Thermal Spray Technology, 2013, 22, 1348-1357.	1.6	44
51	Dry sliding wear behavior of cold sprayed aluminum amorphous/nanocrystalline alloy coatings. Surface and Coatings Technology, 2014, 238, 118-125.	2.2	44
52	The localization of plastic flow under dynamic indentation conditions: I. Experimental results. Acta Materialia, 2006, 54, 565-575.	3.8	43
53	Controllable Crystallographic Texture in Copper Foils Exhibiting Enhanced Mechanical and Electrical Properties by Pulse Reverse Electrodeposition. Crystal Growth and Design, 2015, 15, 4448-4458.	1.4	42
54	The hardness-flow stress correlation in metallic materials. Bulletin of Materials Science, 1994, 17, 747-770.	0.8	41

#	Article	IF	Citations
55	The influence of phase gradient within the micro arc oxidation (MAO) coatings on mechanical and tribological behaviors. Surface and Coatings Technology, 2015, 269, 54-63.	2.2	41
56	Room temperature erosion behaviour of 304, 316 and 410 stainless steels. Wear, 1991, 145, 77-100.	1.5	40
57	Deposition of diamond-like carbon films on aluminium substrates by RF-PECVD technique: Influence of process parameters. Diamond and Related Materials, 2007, 16, 90-97.	1.8	40
58	An analysis of the localization of deformation and weight loss during single-particle normal impact. Wear, 1983, 84, 217-235.	1.5	39
59	The tribological behaviour of detonation sprayed coatings: the importance of coating process parameters. Wear, 2005, 258, 377-391.	1.5	38
60	Effect of Micro Arc Oxidation Coatings on Corrosion Resistance of 6061-Al Alloy. Journal of Materials Engineering and Performance, 2008, 17, 708-713.	1.2	38
61	Erosion behaviour of ductile materials with a spherical non-friable erodent. Wear, 1986, 111, 313-323.	1.5	36
62	Effect of particle shape on the erosion of Cu and its alloys. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 1993, 165, 51-63.	2.6	36
63	The use of dynamic impact experiments in the determination of the strain rate sensitivity of metals and alloys. Acta Metallurgica, 1983, 31, 101-109.	2.1	35
64	A comprehensive analysis of the static indentation process. Materials Science and Engineering, 1987, 91, 169-180.	0.1	35
65	Correlation between erosion behaviour and stacking fault energy in copper alloys. Acta Metallurgica, 1984, 32, 1305-1316.	2.1	34
66	Boride layer growth kinetics during boriding of molybdenum by the Spark Plasma Sintering (SPS) technology. Surface and Coatings Technology, 2006, 201, 2849-2853.	2.2	34
67	A novel colloidal processing route to alumina ceramics. Ceramics International, 2010, 36, 1357-1364.	2.3	33
68	Effect of Feedstock Size and its Distribution on the Properties of Detonation Sprayed Coatings. Journal of Thermal Spray Technology, 2007, 16, 281-290.	1.6	32
69	Electrically conductive carbon nanopipe-graphite nanosheet/polyaniline composites. Carbon, 2011, 49, 5239-5245.	5.4	32
70	Microstructure, mechanical properties and machining performance of spark plasma sintered Al2O3–ZrO2–TiCN nanocomposites. Journal of the European Ceramic Society, 2013, 33, 2597-2607.	2.8	32
71	Indentation creep behavior of cold sprayed aluminum amorphous/nano-crystalline coatings. Materials Science & Science	2.6	32
72	A new model for two-body abrasive wear based on the localization of plastic deformation. Wear, 1987, 117, 1-35.	1.5	30

#	Article	IF	Citations
73	Performance of plasma sprayed and detonation gun sprayed Cu–Ni–In coatings on Ti–6Al–4V under plain fatigue and fretting fatigue loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 479, 83-92.	2.6	30
74	Experimental investigation of grain boundaries misorientations and nano twinning induced strengthening on addition of silicon carbide in pulse electrodeposited nickel tungsten composite coating. Materials Characterization, 2016, 116, 1-7.	1.9	30
75	Microstructure–mechanical property correlation in oxide dispersion strengthened 18Cr ferritic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 451-459.	2.6	30
76	Influence of prior corrosion on the high cycle fatigue behavior of microarc oxidation coated 6061-T6 Aluminum alloy. International Journal of Fatigue, 2011, 33, 1268-1276.	2.8	29
77	Experimental design and performance analysis of alumina coatings deposited by a detonation spray process. Journal Physics D: Applied Physics, 2001, 34, 131-140.	1.3	28
78	Influence of Grit Blasting on the Roughness and the Bond Strength of Detonation Sprayed Coating. Journal of Thermal Spray Technology, 2010, 19, 805-815.	1.6	28
79	Zirconiaâ€Nanoparticleâ€Reinforced Morphologyâ€Engineered Grapheneâ€Based Foams. Advanced Materials, 2015, 27, 4534-4543.	11.1	28
80	Chemisorption of Phosphoric Acid and Surface Characterization of As Passivated AlN Powder Against Hydrolysis. Langmuir, 2008, 24, 5359-5365.	1.6	27
81	Compositionally modulated CGDS+MAO duplex coatings for corrosion protection of AZ91 magnesium alloy. Journal of Alloys and Compounds, 2013, 578, 355-361.	2.8	27
82	Influence of pulsed current on the aqueous corrosion resistance of electrodeposited zinc. Surface and Coatings Technology, 2015, 272, 373-379.	2.2	26
83	The penetration of thick steel plates by ogive shaped projectiles—experiment and analysis. International Journal of Impact Engineering, 1992, 12, 373-408.	2.4	25
84	Weibull analysis of hardness distribution in detonation sprayed nano-structured WC-12Co coatings. Surface and Coatings Technology, 2017, 319, 394-402.	2.2	25
85	The influence of microstructure on the erosion behaviour of cast irons. Wear, 1991, 145, 283-296.	1.5	24
86	An analysis of the transition from metal erosion to oxide erosion. Wear, 1998, 217, 312-320.	1.5	24
87	A non-aqueous processing route for phosphate-protection of AlN powder against hydrolysis. Journal of the European Ceramic Society, 2008, 28, 2281-2288.	2.8	24
88	Influence of detonation gun sprayed alumina coating on AA 6063 samples under cyclic loading with and without fretting. Tribology International, 2008, 41, 315-322.	3.0	24
89	Room temperature erosion behaviour of a precipitation hardened stainless steel. Tribology International, 1992, 25, 271-280.	3.0	23
90	Abrasive wear behaviour of detonation sprayed WC–Co coatings on mild steel. Surface Engineering, 1999, 15, 129-136.	1,1	23

#	Article	IF	CITATIONS
91	Highly (111) Textured Copper Foils with High Hardness and High Electrical Conductivity by Pulse Reverse Electrodeposition. Electrochemical and Solid-State Letters, 2010, 13, D40.	2.2	23
92	Process Optimization for Pulse Reverse Electrodeposition of Graphene-Reinforced Copper Nanocomposites. Materials and Manufacturing Processes, 2016, 31, 1439-1446.	2.7	23
93	The effect of laser surface melting on the erosion behaviour of a low alloy steel. Surface and Coatings Technology, 1993, 58, 85-92.	2.2	22
94	The influence of sample geometry on the friction behaviour of carbon–carbon composites. Acta Materialia, 2002, 50, 1153-1163.	3.8	22
95	Coatability and Characterization of Fly Ash Deposited on Mild Steel by Detonation Spraying. Journal of Thermal Spray Technology, 2003, 12, 77-79.	1.6	22
96	The localization of plastic flow under dynamic indentation conditions: II. Analysis of results. Acta Materialia, 2006, 54, 577-586.	3.8	22
97	Dense \hat{l}^2 -SiAlONs consolidated by a modified hydrolysis-assisted solidification route. Journal of the European Ceramic Society, 2008, 28, 879-885.	2.8	22
98	Effect of microarc oxidised layer thickness on plain fatigue and fretting fatigue behaviour of Al–Mg–Si alloy. International Journal of Fatigue, 2008, 30, 1259-1266.	2.8	22
99	Influence of the duration of high energy ball milling on the microstructure and mechanical properties of a 9Cr oxide dispersion strengthened ferritic–martensitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 620, 490-499.	2.6	22
100	Influence of Chemical Composition and Y ₂ O ₃ on Sinterability, Dielectric Constant, and CTE of βâ€SiAlON. Journal of the American Ceramic Society, 2008, 91, 115-120.	1.9	21
101	An Aqueous Gelcasting Route to Dense β-Si4Al2O2N6–0.5SiO2Ceramics. Journal of the American Ceramic Society, 2008, 91, 1566-1571.	1.9	21
102	Scratch-Induced Deformation Behavior of Cold-Sprayed Aluminum Amorphous/Nanocrystalline Coatings at Multiple Load Scales. Journal of Thermal Spray Technology, 2014, 23, 502-513.	1.6	21
103	The effect of stacking fault energy on the erosion behaviour of copper alloys at oblique impact. Wear, 1985, 103, 133-148.	1.5	20
104	Effect of detonation gun sprayed Cu–Ni–In coating on plain fatigue and fretting fatigue behaviour of Al–Mg–Si alloy. Surface and Coatings Technology, 2006, 201, 1548-1558.	2.2	19
105	Electro-spark coatings for enhanced performance of twist drills. Surface and Coatings Technology, 2008, 202, 1636-1644.	2.2	19
106	Effect of monomers content in enhancing solid-state densification of silicon carbide ceramics by aqueous gelcasting and pressureless sintering. Ceramics International, 2017, 43, 4852-4857.	2.3	19
107	Effect of grinding on plain fatigue and fretting fatigue behaviour of detonation gun sprayed Cu–Ni–In coating on Al–Mg–Si alloy. International Journal of Fatigue, 2009, 31, 791-796.	2.8	18
108	The strain-rate sensitivitity of flow stress and strain-hardening rate in metallic materials. Materials Science & Science & Properties, Microstructure and Processing, 1994, 189, 117-127.	2.6	17

#	Article	IF	CITATIONS
109	Hydrolysisâ€Induced Aqueous Gelcasting of βâ€SiAlON–SiO ₂ Ceramic Composites: The Effect of AlN Additive. Journal of the American Ceramic Society, 2010, 93, 3180-3189.	1.9	15
110	Engineered surfaces for automotive engine and power train components. Current Opinion in Chemical Engineering, 2016, 11, 1-6.	3.8	14
111	An analysis of the transient stage in low stress viscous creep. Acta Metallurgica, 1988, 36, 2167-2181.	2.1	13
112	The volume of the crater formed by the impact of a ball against flat target materialsâ€" The effect of ball hardness and density. International Journal of Impact Engineering, 1990, 9, 237-246.	2.4	13
113	Parametric influence on cut quality attributes and generation of processing maps for laser cutting. Journal of Laser Applications, 1999, 11, 54-63.	0.8	13
114	Influence of Substrate Material on Plain Fatigue and Fretting Fatigue Behavior of Detonation Gun Sprayed Cu-Ni-In Coating. Journal of Thermal Spray Technology, 2007, 16, 571-579.	1.6	13
115	The tribological behaviour of detonation sprayed TiMo(CN) based cermet coatings. International Journal of Refractory Metals and Hard Materials, 2010, 28, 71-81.	1.7	13
116	Aqueous Gelcasting Process for βâ€Si ₄ Al ₂ O ₂ N ₆ Ceramics. Journal of the American Ceramic Society, 2008, 91, 3121-3124.	1.9	12
117	In-situ carbon encapsulation of LiNi1/3Co1/3Mn1/3O2 using pillared ethylene glycol trapped in the metal hydroxide interlayers for enhanced cyclic stability. Electrochimica Acta, 2017, 251, 363-377.	2.6	12
118	Influence of chemical composition on sintering ability of ZTA ceramics consolidated from freeze dried granules. Ceramics International, 2011, 37, 835-841.	2.3	11
119	Influence of Dispersoids on Corrosion Behavior of Oxide Dispersion-Strengthened 18Cr Steels made by High-Energy Milling. Journal of Materials Engineering and Performance, 2016, 25, 577-586.	1.2	11
120	The saturation of flow stress in FCC metals. Scripta Metallurgica, 1982, 16, 611-614.	1.2	10
121	An empirical relation for the volume of the crater formed during high velocity oblique impact tests. Wear, 1984, 97, 9-16.	1.5	10
122	Detonation sprayed WC-Co coatings: unique aspects of their structure and mechanical behaviour. Transactions of the Indian Institute of Metals, 2009, 62, 95-103.	0.7	10
123	Effect of Applied Stress on IR transmission of Spark Plasmaâ€Sintered Alumina. Journal of the American Ceramic Society, 2010, 93, 951-953.	1.9	10
124	Influence of spraying variables on structure and properties of plasma sprayed alumina coatings. Advances in Applied Ceramics, 2000, 99, 241-247.	0.4	9
125	The effect of boron-pack refreshment on the boriding of mild steel by the spark plasma sintering (SPS) process. Surface and Coatings Technology, 2008, 202, 2830-2836.	2.2	9
126	A Comparison of Mechanical and Tribological Behavior of Nanostructured and Conventional WC-12Co Detonation-Sprayed Coatings. Journal of Thermal Spray Technology, 2013, 22, 478-490.	1.6	9

#	Article	IF	CITATIONS
127	The effect of temperature on solid particle erosion. Wear, 1984, 98, 141-149.	1.5	8
128	Application of Taguchi Method to the Optimization of Detonation Spraying Process. Materials and Manufacturing Processes, 2000, 15, 139-153.	2.7	8
129	Hydrolysis-Induced Aqueous Gelcasting of Magnesium Aluminate Spinel. International Journal of Applied Ceramic Technology, 2011, 8, 873-884.	1.1	8
130	Fabrication and Photoelectrochemical Characterization of Fe, Co, Ni and Cu-Doped TiO ₂ Thin Films. Materials Science Forum, 2013, 764, 266-283.	0.3	8
131	The solid particle erosion of copper at very low impact velocities. Wear, 1989, 135, 95-108.	1.5	7
132	Influence of solid solution and dispersion strengthening meehanismson room temperature erosion behaviour of niekel. Materials Science and Technology, 1995, 11, 791-797.	0.8	7
133	Tribological behaviour of ion deposited ZrN coatings on mild steel substrate. Surface Engineering, 1997, 13, 219-222.	1.1	7
134	Understanding dynamic indentation behaviour of metallic materials. Materials Science and Technology, 2012, 28, 1101-1107.	0.8	7
135	Mechanical Properties of Transparent Polycrystalline Alumina Ceramics Processed Using an Environmentally Benign Thermal Gel Casting Process. Experimental Mechanics, 2013, 53, 123-129.	1.1	7
136	Continuous cavity nucleation and creep ductility. Scripta Metallurgica, 1985, 19, 1141-1146.	1.2	6
137	Optimizing mechanical properties of spark plasma sintered ZTA using neural network and genetic algorithm. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 529, 492-496.	2.6	6
138	On the anomalous flow behaviour of nickel aluminide. Scripta Metallurgica Et Materialia, 1990, 24, 257-262.	1.0	5
139	Influence of processing route and SiO ₂ on sintering ability, CTE, and dielectric constant of β-Si ₄ Al ₂ O ₂ N ₆ . Journal of Materials Research, 2008, 23, 2305-2311.	1.2	5
140	On the correlation of erosion and wear resistance of pure metals with their mechanical and thermophysical properties. Scripta Metallurgica, 1985, 19, 347-352.	1.2	4
141	Evaluation of microhardness correction procedures. Wear, 1986, 110, 183-202.	1.5	4
142	An analysis of the creep embrittlement of Inconel alloy X-750 due to its prior exposure to reduced air pressure at 1150°C. Materials at High Temperatures, 1992, 10, 227-236.	0.5	4
143	The erosion behaviour of an aluminium-lithium alloy. Scripta Metallurgica Et Materialia, 1992, 27, 937-942.	1.0	4
144	Formation and Densification Behavior of Mullite Aggregates from Beach Sand Sillimanite. Journal of the American Ceramic Society, 2008, 91, 2464-2468.	1.9	4

#	Article	IF	CITATIONS
145	Effect of Clamping Rigidity of the Armour on Ballistic Performance. Defence Science Journal, 1992, 42, 117-120.	0.5	4
146	Material deformation and fracture under impulsive loading conditions. Bulletin of Materials Science, 1992, 15, 3-25.	0.8	2
147	The dynamic indentation behavior of steel at large depths of penetration. Journal of Materials Research, 2009, 24, 691-703.	1.2	2
148	The effect of matrix constraint on intergranular cavity growth mechanism maps. Materials Science and Engineering, 1987, 92, 113-126.	0.1	1
149	Hot deformation behavior of n-ODS-18Cr steel. Procedia Engineering, 2017, 207, 191-196.	1.2	1
150	Evidence of accelerated thermal cycling test schedules influencing the ranking of zirconia-base thermal barrier coatings. Journal of Thermal Spray Technology, 1995, 4, 275-279.	1.6	0
151	Tribo-Corrosion 2006—A passage to India to celebrate the 1st International Conference on Tribo-Corrosion. Tribology International, 2008, 41, 571-572.	3.0	0