Matthew A Bailey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9213676/publications.pdf Version: 2024-02-01

ΜΑΤΤΗΕΊΛΙ Δ ΒΛΙΙΕΥ

#	Article	IF	CITATIONS
1	The impact of excessive salt intake on human health. Nature Reviews Nephrology, 2022, 18, 321-335.	4.1	46
2	Activation of the Sympathetic Nervous System Promotes Blood Pressure Salt-Sensitivity in C57BL6/J Mice. Hypertension, 2021, 77, 158-168.	1.3	19
3	Nondipping Blood Pressure: Predictive or Reactive Failure of Renal Sodium Handling?. Physiology, 2021, 36, 21-34.	1.6	8
4	Circulating argonaute-bound microRNA-126 reports vascular dysfunction and treatment response in acute and chronic kidney disease. IScience, 2021, 24, 101937.	1.9	16
5	Purinergic signalling in the kidney: In physiology and disease. Biochemical Pharmacology, 2021, 187, 114389.	2.0	11
6	Salbutamol and salt-sensitive hypertension. Kidney International, 2021, 100, 272-275.	2.6	0
7	The acute pressure natriuresis response is suppressed by selective ETA receptor blockade. Clinical Science, 2021, , .	1.8	2
8	Exosomes in nephrology. , 2020, , 257-283.		3
9	Biological Context Linking Hypertension and Higher Risk for COVID-19 Severity. Frontiers in Physiology, 2020, 11, 599729.	1.3	9
10	Transfer of hepatocellular microRNA regulates cytochrome P450 2E1 in renal tubular cells. EBioMedicine, 2020, 62, 103092.	2.7	11
11	Endogenous Activation of Glucagon-Like Peptide-1 Receptor Contributes to Blood Pressure Control. Hypertension, 2020, 76, 839-848.	1.3	31
12	Deletion of the myeloid endothelin-B receptor confers long-term protection from angiotensin II-mediated kidney, eye and vessel injury. Kidney International, 2020, 98, 1193-1209.	2.6	8
13	Saltâ€sensitive hypertension and the immune system. Experimental Physiology, 2020, 105, 767-768.	0.9	Ο
14	Endothelin-1 Mediates the Systemic and Renal Hemodynamic Effects of GPR81 Activation. Hypertension, 2020, 75, 1213-1222.	1.3	15
15	Trichostatin <scp>A</scp> blocks aldosteroneâ€induced Na ⁺ transport and control of serum―and glucocorticoidâ€inducible kinase 1 in cortical collecting duct cells. British Journal of Pharmacology, 2019, 176, 4708-4719.	2.7	10
16	Glucocorticoid receptor activation stimulates the sodium-chloride cotransporter and influences the diurnal rhythm of its phosphorylation. American Journal of Physiology - Renal Physiology, 2019, 317, F1536-F1548.	1.3	24
17	Refining the Mouse Subtotal Nephrectomy in Male 129S2/SV Mice for Consistent Modeling of Progressive Kidney Disease With Renal Inflammation and Cardiac Dysfunction. Frontiers in Physiology, 2019, 10, 1365.	1.3	11
18	Hyperkalemia: pathophysiology, risk factors and consequences. Nephrology Dialysis Transplantation, 2019, 34, iii2-iii11.	0.4	102

#	Article	IF	CITATIONS
19	Urinary Extracellular Vesicle Protein Profiling and Endogenous Lithium Clearance Support Excessive Renal Sodium Wasting and Water Reabsorption inÂThiazide-Induced Hyponatremia. Kidney International Reports, 2019, 4, 139-147.	0.4	8
20	A novel role for myeloid endothelin-B receptors in hypertension. European Heart Journal, 2019, 40, 768-784.	1.0	31
21	Prevalence and antimicrobial resistance of Campylobacterfrom antibiotic-free broilers during organic and conventional processing. Poultry Science, 2019, 98, 1447-1454.	1.5	35
22	Impaired pressure natriuresis and nonâ€dipping blood pressure in rats with early type 1 diabetes mellitus. Journal of Physiology, 2019, 597, 767-780.	1.3	11
23	Mechanisms of Salt‧ensitive Hypertension in a Mouse Model of ACTHâ€Dependent Cushing Syndrome. FASEB Journal, 2019, 33, .	0.2	0
24	The Role of the Endothelin System in the Progression of Acute Kidney Injury to Chronic Kidney Disease. FASEB Journal, 2019, 33, 748.12.	0.2	0
25	Corticosteroid Regulation of ENaCâ€Mediated Na + Transport in a Cellular Model of the Cortical Collecting Duct. FASEB Journal, 2019, 33, .	0.2	0
26	High Sodium Diet in 11β Hydroxysteroid Dehydrogenase Type 2 CNS Knockout Mice Induces a Proinflammatory Phenotype of Perivascular Adipose Tissue and Alterations in Arterial Reactivity. FASEB Journal, 2019, 33, 866.8.	0.2	0
27	Comparison of processing parameters in small and very small beef processing plants and their impact on Escherichia coli prevalence. LWT - Food Science and Technology, 2018, 95, 92-98.	2.5	0
28	Thermal Inactivation of Shiga Toxin–Producing Escherichia coli in Ground Beef with Varying Fat Content. Journal of Food Protection, 2018, 81, 986-992.	0.8	7
29	The renal and blood pressure response to low sodium diet in P2X4 receptor knockout mice. Physiological Reports, 2018, 6, e13899.	0.7	8
30	Renal and Blood Pressure Response to a High-Salt Diet in Mice With Reduced Global Expression of the Glucocorticoid Receptor. Frontiers in Physiology, 2018, 9, 848.	1.3	22
31	Prevalence, Persistence, and Antimicrobial Resistance of <i>Campylobacter</i> spp. from Eggs and Laying Hens Housed in Five Commercial Housing Systems. Foodborne Pathogens and Disease, 2018, 15, 506-516.	0.8	13
32	First-in-Man Demonstration of Direct Endothelin-Mediated Natriuresis and Diuresis. Hypertension, 2017, 70, 192-200.	1.3	7
33	Hyperglycemia-induced Renal P2X7 Receptor Activation Enhances Diabetes-related Injury. EBioMedicine, 2017, 19, 73-83.	2.7	64
34	Transcription controls growth, cell kinetics and cholesterol supply to sustain ACTH responses. Endocrine Connections, 2017, 6, 446-457.	0.8	7
35	11β-Hydroxysteroid Dehydrogenases and Hypertension in the Metabolic Syndrome. Current Hypertension Reports, 2017, 19, 100.	1.5	34
36	Purinergic signaling in kidney disease. Kidney International, 2017, 91, 315-323.	2.6	72

#	Article	IF	CITATIONS
37	11β-HSD2 SUMOylation Modulates Cortisol-Induced Mineralocorticoid Receptor Nuclear Translocation Independently of Effects on Transactivation. Endocrinology, 2017, 158, 4047-4063.	1.4	14
38	Renal extracellular vesicles: from physiology to clinical application. Journal of Physiology, 2016, 594, 5735-5748.	1.3	43
39	Dexamethasone and insulin activate serum and glucocorticoid-inducible kinase 1 (SGK1) via different molecular mechanisms in cortical collecting duct cells. Physiological Reports, 2016, 4, e12792.	0.7	21
40	Vasopressin Regulates Extracellular Vesicle Uptake by Kidney Collecting Duct Cells. Journal of the American Society of Nephrology: JASN, 2016, 27, 3345-3355.	3.0	48
41	ISN Forefronts Symposium 2015: TheÂEvolution of Hypertension–Old Genes, NewÂConcepts. Kidney International Reports, 2016, 1, 197-203.	0.4	6
42	ER stress and basement membrane defects combine to cause glomerular and tubular renal disease resulting from <i>Col4a1</i> mutations in mice. DMM Disease Models and Mechanisms, 2016, 9, 165-176.	1.2	34
43	Conditional Deletion of <i>Hsd11b2</i> in the Brain Causes Salt Appetite and Hypertension. Circulation, 2016, 133, 1360-1370.	1.6	60
44	Glucocorticoids Induce Nondipping Blood Pressure by Activating the Thiazide-Sensitive Cotransporter. Hypertension, 2016, 67, 1029-1037.	1.3	61
45	Comprehensive microRNA profiling in acetaminophen toxicity identifies novel circulating biomarkers for human liver and kidney injury. Scientific Reports, 2015, 5, 15501.	1.6	114
46	Sodium homeostasis is preserved in a global 11βâ€hydroxysteroid dehydrogenase type 1 knockout mouse model. Experimental Physiology, 2015, 100, 1362-1378.	0.9	3
47	Vascular and inflammatory actions of P2X receptors in renal injury. Autonomic Neuroscience: Basic and Clinical, 2015, 191, 135-140.	1.4	15
48	Mineralocorticoid Excess or Glucocorticoid Insufficiency. Hypertension, 2015, 66, 667-673.	1.3	25
49	Glucocorticoids and 11β-hydroxysteroid dehydrogenases: mechanisms for hypertension. Current Opinion in Pharmacology, 2015, 21, 105-114.	1.7	43
50	Fetal brain 11β-hydroxysteroid dehydrogenase type 2 selectively determines programming of adult depressive-like behaviors and cognitive function, but not anxiety behaviors in male mice. Psychoneuroendocrinology, 2015, 59, 59-70.	1.3	32
51	Inhibition of the purinergic P2X7 receptor improves renal perfusion in angiotensin-II-infused rats. Kidney International, 2015, 88, 1079-1087.	2.6	48
52	Renal P2 receptors and hypertension. Acta Physiologica, 2015, 213, 232-241.	1.8	45
53	Hypertrophy in the Distal Convoluted Tubule of an 11β-Hydroxysteroid Dehydrogenase Type 2 Knockout Model. Journal of the American Society of Nephrology: JASN, 2015, 26, 1537-1548.	3.0	27
54	Glucocorticoids and renal Na ⁺ transport: implications for hypertension and salt sensitivity. Journal of Physiology, 2014, 592, 1731-1744.	1.3	58

#	Article	IF	CITATIONS
55	Purinergic signalling in the kidney in health and disease. Purinergic Signalling, 2014, 10, 71-101.	1.1	84
56	Retro-Orbital Blood Acquisition Facilitates Circulating microRNA Measurement in Zebrafish with Paracetamol Hepatotoxicity. Zebrafish, 2014, 11, 219-226.	0.5	37
57	Pressure natriuresis and the renal control of arterial blood pressure. Journal of Physiology, 2014, 592, 3955-3967.	1.3	121
58	Acute inhibition of NCC does not activate distal electrogenic Na ⁺ reabsorption or kaliuresis. American Journal of Physiology - Renal Physiology, 2014, 306, F457-F467.	1.3	56
59	Urinary exosomes: A reservoir for biomarker discovery and potential mediators of intrarenal signalling. Proteomics, 2013, 13, 1572-1580.	1.3	150
60	Extracellular Nucleotides and Renal Function. , 2013, , 511-537.		5
61	Regulation of K+ Excretion. , 2013, , 1659-1715.		13
62	Quantification of human urinary exosomes by nanoparticle tracking analysis. Journal of Physiology, 2013, 591, 5833-5842.	1.3	176
63	Effect of P2X4 and P2X7 receptor antagonism on the pressure diuresis relationship in rats. Frontiers in Physiology, 2013, 4, 305.	1.3	33
64	An anatomically unbiased approach for analysis of renal BOLD magnetic resonance images. American Journal of Physiology - Renal Physiology, 2013, 305, F845-F852.	1.3	6
65	Abnormal regulation of NCC in glucocorticoid receptor haploinsufficient mice. FASEB Journal, 2013, 27, 911.11.	0.2	Ο
66	Hyperglycemia and Renin-Dependent Hypertension Synergize to Model Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2012, 23, 405-411.	3.0	40
67	A urine-concentrating defect in 11β-hydroxysteroid dehydrogenase type 2 null mice. American Journal of Physiology - Renal Physiology, 2012, 303, F494-F502.	1.3	14
68	Failure to Downregulate the Epithelial Sodium Channel Causes Salt Sensitivity in <i>Hsd11b2</i> Heterozygote Mice. Hypertension, 2012, 60, 684-690.	1.3	26
69	Techniques for the <i>in vivo</i> assessment of cardioâ€renal function in zebrafish (<i>Danio rerio</i>) larvae. Journal of Physiology, 2012, 590, 1803-1809.	1.3	38
70	Activation of Thiazide-Sensitive Co-Transport by Angiotensin II in the cyp1a1-Ren2 Hypertensive Rat. PLoS ONE, 2012, 7, e36311.	1.1	24
71	P2X receptors and kidney function. Environmental Sciences Europe, 2012, 1, 503-511.	2.6	7
72	Exosomal transmission of functional aquaporin 2 in kidney cortical collecting duct cells. Journal of Physiology, 2011, 589, 6119-6127.	1.3	123

#	Article	IF	CITATIONS
73	<i>Hsd11b2</i> Haploinsufficiency in Mice Causes Salt Sensitivity of Blood Pressure. Hypertension, 2011, 57, 515-520.	1.3	41
74	In silico structure-function analysis of pathological variation in the <i>HSD11B2</i> gene sequence. Physiological Genomics, 2010, 42, 319-330.	1.0	24
75	Transcriptional and physiological responses to chronic ACTH treatment by the mouse kidney. Physiological Genomics, 2010, 40, 158-166.	1.0	21
76	Col4a1 mutation in mice causes defects in vascular function and low blood pressure associated with reduced red blood cell volume. Human Molecular Genetics, 2010, 19, 1119-1128.	1.4	75
77	Foot-and-Mouth Disease Virus 2C Is a Hexameric AAA+ Protein with a Coordinated ATP Hydrolysis Mechanism. Journal of Biological Chemistry, 2010, 285, 24347-24359.	1.6	57
78	Angiotensin-converting Enzyme Is a Modifier of Hypertensive End Organ Damage. Journal of Biological Chemistry, 2009, 284, 15564-15572.	1.6	20
79	Mineralocorticoid and Glucocorticoid Receptors Stimulate Epithelial Sodium Channel Activity in a Mouse Model of Cushing Syndrome. Hypertension, 2009, 54, 890-896.	1.3	66
80	Effects of extracellular nucleotides on renal tubular solute transport. Purinergic Signalling, 2009, 5, 473-480.	1.1	30
81	Quantitative analysis of RU38486 (mifepristone) by HPLC triple quadrupole mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 497-501.	1.2	7
82	Development of a highly sensitive ELISA for aldosterone in mouse urine: Validation in physiological and pathophysiological states of aldosterone excess and depletion. Steroids, 2009, 74, 456-462.	0.8	23
83	Physiological and pathophysiological applications of sensitive ELISA methods for urinary deoxycorticosterone and corticosterone in rodents. Steroids, 2009, 74, 938-944.	0.8	23
84	A Switch in the Mechanism of Hypertension in the Syndrome of Apparent Mineralocorticoid Excess. Journal of the American Society of Nephrology: JASN, 2008, 19, 47-58.	3.0	58
85	Extracellular Nucleotides and Renal Function. , 2008, , 425-442.		3
86	Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter's syndrome and in adaptation to a high-K diet. Kidney International, 2006, 70, 51-59.	2.6	161
87	The influence of cardiovascular and antiinflammatory drugs on thiazide-induced hemodynamic and saluretic effects. European Journal of Clinical Pharmacology, 2006, 62, 885-892.	0.8	11
88	Role of Endothelin Receptors for Renal Protection and Survival in Hypertension. Hypertension, 2006, 48, 834-837.	1.3	18
89	Hypertension, Kidney, and Transgenics: A Fresh Perspective. Physiological Reviews, 2006, 86, 709-746.	13.1	89
90	In vivo stimulation of apical P2 receptors in collecting ducts: evidence for inhibition of sodium reabsorption. American Journal of Physiology - Renal Physiology, 2005, 288, F1243-F1248.	1.3	54

#	Article	IF	CITATIONS
91	The B1-subunit of the H+ ATPase is required for maximal urinary acidification. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13616-13621.	3.3	126
92	Inhibition of bicarbonate reabsorption in the rat proximal tubule by activation of luminal P2Y1 receptors. American Journal of Physiology - Renal Physiology, 2004, 287, F789-F796.	1.3	49
93	P2Y Receptors Present in the Native and Isolated Rat Glomerulus. Nephron Physiology, 2004, 96, p79-p90.	1.5	49
94	NHE2-mediated bicarbonate reabsorption in the distal tubule of NHE3 null mice. Journal of Physiology, 2004, 561, 765-775.	1.3	41
95	ETA receptor-mediated Ca2+ signaling in thin descending limbs of Henle's loop: Impairment in genetic hypertension. Kidney International, 2003, 63, 1276-1284.	2.6	16
96	Purinergic Signaling Along the Renal Tubule: The Current State of Play. Physiology, 2003, 18, 237-241.	1.6	56
97	Inhibition of heme oxygenase decreases sodium and fluid absorption in the loop of Henle. American Journal of Physiology - Renal Physiology, 2003, 285, F484-F490.	1.3	29
98	Purinergic (P2) Receptors in the Kidney. Current Topics in Membranes, 2003, 54, 369-394.	0.5	0
99	Role of luminal anion and pH in distal tubule potassium secretion. American Journal of Physiology - Renal Physiology, 2003, 284, F381-F388.	1.3	42
100	The natriuretic effect of glibenclamide: evidence for a non-luminal site of action. Pflugers Archiv European Journal of Physiology, 2002, 444, 777-784.	1.3	2
101	RAPID COMMUNICATIONIn vivo inhibition of renal $11^{\hat{l}^2}$ -hydroxysteroid dehydrogenase in the rat stimulates collecting duct sodium reabsorption. Clinical Science, 2001, 101, 195-198.	1.8	17
102	Evidence for Basolateral P2Y6 Receptors along the Rat Proximal Tubule. Journal of the American Society of Nephrology: JASN, 2001, 12, 1640-1647.	3.0	40
103	In vivo inhibition of renal 11beta-hydroxysteroid dehydrogenase in the rat stimulates collecting duct sodium reabsorption. Clinical Science, 2001, 101, 195-8.	1.8	8
104	Axial distribution and characterization of basolateral P2Y receptors along the rat renal tubule. Kidney International, 2000, 58, 1893-1901.	2.6	78
105	Effects of Changes in Dietary Intake of Sodium and Potassium and of Metabolic Acidosis on 11β-Hydroxysteroid Dehydrogenase Activities in Rat Kidney. Nephron Experimental Nephrology, 2000, 8, 44-51.	2.4	21
106	P2 receptors in the kidney. Journal of the Autonomic Nervous System, 2000, 81, 264-270.	1.9	57
107	Upregulation of H+-ATPase in the distal nephron during potassium depletion: structural and functional evidence. American Journal of Physiology - Renal Physiology, 1998, 275, F878-F884.	1.3	15
108	NOTE ON AMERICAN GOOSEBERRY MILDEW. Annals of Applied Biology, 1915, 2, 162-165.	1.3	0

#	Article	IF	CITATIONS
109	Glucocorticoids and Mineralocorticoids. , 0, , 1-37.		4