Tadayuki Yago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9213409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct observation of catch bonds involving cell-adhesion molecules. Nature, 2003, 423, 190-193.	27.8	880
2	Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature, 2013, 502, 105-109.	27.8	275
3	Platelet glycoprotein Ibα forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. Journal of Clinical Investigation, 2008, 118, 3195-207.	8.2	257
4	Low Force Decelerates L-selectin Dissociation from P-selectin Glycoprotein Ligand-1 and Endoglycan. Journal of Biological Chemistry, 2004, 279, 2291-2298.	3.4	222
5	Catch bonds govern adhesion through L-selectin at threshold shear. Journal of Cell Biology, 2004, 166, 913-923.	5.2	202
6	P-selectin glycoprotein ligand-1–deficient mice have impaired leukocyte tethering to E-selectin under flow. Journal of Clinical Investigation, 2002, 109, 939-950.	8.2	193
7	E-selectin engages PSGL-1 and CD44 through a common signaling pathway to induce integrin αLβ2-mediated slow leukocyte rolling. Blood, 2010, 116, 485-494.	1.4	179
8	P-Selectin Glycoprotein Ligand-1 Is Highly Expressed on Ly-6C ^{hi} Monocytes and a Major Determinant for Ly-6C ^{hi} Monocyte Recruitment to Sites of Atherosclerosis in Mice. Circulation, 2008, 117, 3227-3237.	1.6	153
9	Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow. Journal of Cell Biology, 2002, 158, 787-799.	5.2	141
10	Flow-enhanced adhesion regulated by a selectin interdomain hinge. Journal of Cell Biology, 2006, 174, 1107-1117.	5.2	136
11	Dynamic alterations of membrane tethers stabilize leukocyte rolling on P-selectin. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13519-13524.	7.1	112
12	P-selectin glycoprotein ligand-1–deficient mice have impaired leukocyte tethering to E-selectin under flow. Journal of Clinical Investigation, 2002, 109, 939-950.	8.2	112
13	Mechanisms for Flow-Enhanced Cell Adhesion. Annals of Biomedical Engineering, 2008, 36, 604-621.	2.5	99
14	Quantifying the Effects of Molecular Orientation and Length on Two-dimensional Receptor-Ligand Binding Kinetics. Journal of Biological Chemistry, 2004, 279, 44915-44923.	3.4	98
15	Separable requirements for cytoplasmic domain of PSGL-1 in leukocyte rolling and signaling under flow. Blood, 2008, 112, 2035-2045.	1.4	94
16	Sialylation on O-glycans protects platelets from clearance by liver Kupffer cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8360-8365.	7.1	94
17	Model Glycosulfopeptides from P-selectin Glycoprotein Ligand-1 Require Tyrosine Sulfation and a Core 2-branched O-Glycan to Bind to L-selectin. Journal of Biological Chemistry, 2003, 278, 26391-26400.	3.4	91
18	Cooperative PSGL-1 and CXCR2 signaling in neutrophils promotes deep vein thrombosis in mice. Blood, 2018, 132, 1426-1437.	1.4	80

Ταdayuki Yago

#	Article	IF	CITATIONS
19	Blocking neutrophil integrin activation prevents ischemia–reperfusion injury. Journal of Experimental Medicine, 2015, 212, 1267-1281.	8.5	78
20	Differential regulation of human and murine P-selectin expression and function in vivo. Journal of Experimental Medicine, 2010, 207, 2975-2987.	8.5	72
21	Transport Governs Flow-Enhanced Cell Tethering through L-Selectin at Threshold Shear. Biophysical Journal, 2007, 92, 330-342.	0.5	68
22	Core 1-derived O-glycans are essential E-selectin ligands on neutrophils. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9204-9209.	7.1	67
23	Temporal and spatial regulation of epsin abundance and VEGFR3 signaling are required for lymphatic valve formation and function. Science Signaling, 2014, 7, ra97.	3.6	57
24	O-glycans direct selectin ligands to lipid rafts on leukocytes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8661-8666.	7.1	53
25	Transcriptional regulation of podoplanin expression by Prox1 in lymphatic endothelial cells. Microvascular Research, 2014, 94, 96-102.	2.5	52
26	Structurally Distinct Requirements for Binding of P-selectin Glycoprotein Ligand-1 and Sialyl Lewis x to Anaplasma phagocytophilum and P-selectin. Journal of Biological Chemistry, 2003, 278, 37987-37997.	3.4	49
27	Replacing a Lectin Domain Residue in L-selectin Enhances Binding to P-selectin Glycoprotein Ligand-1 but Not to 6-Sulfo-sialyl Lewis x. Journal of Biological Chemistry, 2008, 283, 11493-11500.	3.4	49
28	Regulation of Catch Bonds by Rate of Force Application. Journal of Biological Chemistry, 2011, 286, 32749-32761.	3.4	46
29	Podoplanin requires sialylated O-glycans for stable expression on lymphatic endothelial cells and for interaction with platelets. Blood, 2014, 124, 3656-3665.	1.4	44
30	Selectins and chemokines use shared and distinct signals to activate β2 integrins in neutrophils. Blood Advances, 2018, 2, 731-744.	5.2	40
31	Site-1 protease deficiency causes human skeletal dysplasia due to defective inter-organelle protein trafficking. JCI Insight, 2018, 3, .	5.0	39
32	Cytoskeletal Regulation of CD44 Membrane Organization and Interactions with E-selectin. Journal of Biological Chemistry, 2014, 289, 35159-35171.	3.4	37
33	Multi-Inhibitory Effects of A2A Adenosine Receptor Signaling on Neutrophil Adhesion Under Flow. Journal of Immunology, 2015, 195, 3880-3889.	0.8	36
34	Endothelial signaling by neutrophil-released oncostatin M enhances P-selectin–dependent inflammation and thrombosis. Blood Advances, 2019, 3, 168-183.	5.2	36
35	Elevated CXCL1 expression in gp130-deficient endothelial cells impairs neutrophil migration in mice. Blood, 2013, 122, 3832-3842.	1.4	31
36	Signal-dependent Slow Leukocyte Rolling Does Not Require Cytoskeletal Anchorage of P-selectin Glycoprotein Ligand-1 (PSGL-1) or Integrin αLβ2. Journal of Biological Chemistry, 2012, 287, 19585-19598.	3.4	30

Ταdayuki Yago

#	Article	IF	CITATIONS
37	L-selectin mechanochemistry restricts neutrophil priming in vivo. Nature Communications, 2017, 8, 15196.	12.8	30
38	Characterization of a sialic acid- and P-selectin glycoprotein ligand-1-independent adhesin activity in the granulocytotropic bacterium Anaplasma phagocytophilum. Cellular Microbiology, 2006, 8, 1972-1984.	2.1	29
39	Epsin-mediated degradation of IP3R1 fuels atherosclerosis. Nature Communications, 2020, 11, 3984.	12.8	24
40	Platelets lacking PIP5KlÎ ³ have normal integrin activation but impaired cytoskeletal-membrane integrity and adhesion. Blood, 2013, 121, 2743-2752.	1.4	20
41	Cytoplasmic Domain of P-selectin Glycoprotein Ligand-1 Facilitates Dimerization and Export from the Endoplasmic Reticulum. Journal of Biological Chemistry, 2011, 286, 9577-9586.	3.4	8
42	Neutrophils lacking ERM proteins polarize and crawl directionally but have decreased adhesion strength. Blood Advances, 2020, 4, 3559-3571.	5.2	6
43	Th1 Cells Rolling on Selectins Trigger DAP12-Dependent Signals That Activate Integrin αLβ2. Journal of Immunology, 2020, 204, 37-48.	0.8	3
44	The Sliding–Rebinding Mechanism for Catch Bonds [*] . Japanese Journal of Applied Physics, 2007, 46, 5528.	1.5	0
45	Catch bond mechanism suggested by GPIb alphaâ€vWF tether bonds. FASEB Journal, 2007, 21, A18.	0.5	0
46	Glycoprotein Ibα Forms Catch Bonds with von Willebrand Factor A1 Domain but Not with Mutant A1 Domains Exhibiting Properties of Type 2B von Willebrand Disease Blood, 2007, 110, 293-293.	1.4	0
47	Signaling through the PSGLâ€1 cytoplasmic domain to activate β2â€integrinâ€mediated slow rolling of neutrophils. FASEB Journal, 2008, 22, 1071.2.	0.5	0