John J Wiens

List of Publications by Citations

Source: https://exaly.com/author-pdf/9212964/john-j-wiens-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 207
 25,843
 87
 159

 papers
 citations
 h-index
 g-index

 213
 29,516
 5.6
 7.92

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
207	Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 2005 , 36, 519-539	13.5	1469
206	Historical biogeography, ecology and species richness. <i>Trends in Ecology and Evolution</i> , 2004 , 19, 639-44	10.9	1195
205	Niche conservatism as an emerging principle in ecology and conservation biology. <i>Ecology Letters</i> , 2010 , 13, 1310-24	10	1081
204	A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. <i>Molecular Phylogenetics and Evolution</i> , 2011 , 61, 543-83	4.1	1016
203	A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. <i>BMC Evolutionary Biology</i> , 2013 , 13, 93	3	946
202	Ecological Thresholds: The Key to Successful Environmental Management or an Important Concept with No Practical Application?. <i>Ecosystems</i> , 2006 , 9, 1-13	3.9	684
201	Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology, 2003 , 52, 528-38	8.4	506
200	Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). <i>Systematic Biology</i> , 2002 , 51, 69-91	8.4	474
199	Combining data sets with different phylogenetic histories. <i>Systematic Biology</i> , 1998 , 47, 568-81	8.4	470
198	How does climate change cause extinction?. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2013 , 280, 20121890	4.4	464
197	Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. <i>Evolution; International Journal of Organic Evolution</i> , 2004 , 58, 193-7	3.8	451
196	A checklist for ecological management of landscapes for conservation. <i>Ecology Letters</i> , 2008 , 11, 78-91	10	409
195	Missing data and the design of phylogenetic analyses. <i>Journal of Biomedical Informatics</i> , 2006 , 39, 34-42	10.2	350
194	Integrating GIS-based environmental data into evolutionary biology. <i>Trends in Ecology and Evolution</i> , 2008 , 23, 141-8	10.9	341
193	Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. <i>Molecular Phylogenetics and Evolution</i> , 2016 , 94, 537-547	4.1	339
192	Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. <i>American Naturalist</i> , 2006 , 168, 579-96	3.7	323
191	Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. <i>Systematic Biology</i> , 2011 , 60, 719-31	8.4	317

190	Species delimitation: new approaches for discovering diversity. Systematic Biology, 2007, 56, 875-8	8.4	316
189	The niche, biogeography and species interactions. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2011 , 366, 2336-50	5.8	279
188	Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species. <i>PLoS Biology</i> , 2016 , 14, e2001104	9.7	270
187	Widespread loss of sexually selected traits: how the peacock lost its spots. <i>Trends in Ecology and Evolution</i> , 2001 , 16, 517-523	10.9	264
186	Hylid frog phylogeny and sampling strategies for speciose clades. Systematic Biology, 2005, 54, 778-807	8.4	252
185	The role of morphological data in phylogeny reconstruction. Systematic Biology, 2004, 53, 653-61	8.4	245
184	Character analysis in morphological phylogenetics: problems and solutions. <i>Systematic Biology</i> , 2001 , 50, 689-99	8.4	243
183	Explaining species richness from continents to communities: the time-for-speciation effect in emydid turtles. <i>American Naturalist</i> , 2003 , 161, 112-28	3.7	232
182	Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. <i>Biology Letters</i> , 2012 , 8, 1043-6	3.6	231
181	Does adding characters with missing data increase or decrease phylogenetic accuracy?. <i>Systematic Biology</i> , 1998 , 47, 625-40	8.4	225
180	Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 123-41	3.8	224
179	Niche conservatism drives elevational diversity patterns in Appalachian salamanders. <i>American Naturalist</i> , 2010 , 176, 40-54	3.7	221
178	The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. <i>Molecular Phylogenetics and Evolution</i> , 2011 , 58, 329-42	4.1	221
177	WHY DOES A TRAIT EVOLVE MULTIPLE TIMES WITHIN A CLADE? REPEATED EVOLUTION OF SNAKELINE BODY FORM IN SQUAMATE REPTILES. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 123-141	3.8	220
176	Can incomplete taxa rescue phylogenetic analyses from long-branch attraction?. <i>Systematic Biology</i> , 2005 , 54, 731-42	8.4	216
175	The causes of species richness patterns across space, time, and clades and the role of "ecological limits". <i>Quarterly Review of Biology</i> , 2011 , 86, 75-96	5.4	200
174	Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 16819-24	11.5	200
173	Global patterns of diversification and species richness in amphibians. <i>American Naturalist</i> , 2007 , 170 Suppl 2, S86-106	3.7	198

172	Rapid development of multiple nuclear loci for phylogenetic analysis using genomic resources: an example from squamate reptiles. <i>Molecular Phylogenetics and Evolution</i> , 2008 , 47, 129-42	4.1	196
171	Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. <i>Systematic Biology</i> , 2005 , 54, 91-110	8.4	196
170	Accelerated rates of climatic-niche evolution underlie rapid species diversification. <i>Ecology Letters</i> , 2010 , 13, 1378-89	10	192
169	Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. <i>Ecology Letters</i> , 2013 , 16, 1095-103	10	191
168	Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2010 , 277, 2131-8	4.4	188
167	Are rates of species diversification correlated with rates of morphological evolution?. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2009 , 276, 2729-38	4.4	184
166	Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. <i>PLoS ONE</i> , 2015 , 10, e0118199	3.7	182
165	Polymorphic Characters in Phylogenetic Systematics. <i>Systematic Biology</i> , 1995 , 44, 482-500	8.4	182
164	Species delimitation in systematics: inferring diagnostic differences between species. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2000 , 267, 631-6	4.4	178
163	Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2013 , 280, 20131622	4.4	174
162	Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. <i>Systematic Biology</i> , 2010 , 59, 674-88	8.4	173
161	What is speciation and how should we study it?. American Naturalist, 2004, 163, 914-23	3.7	163
160	How lizards turn into snakes: a phylogenetic analysis of body-form evolution in anguid lizards. <i>Evolution; International Journal of Organic Evolution</i> , 2001 , 55, 2303-18	3.8	161
159	Evolutionary and biogeographic origins of high tropical diversity in old world frogs (Ranidae). <i>Evolution; International Journal of Organic Evolution</i> , 2009 , 63, 1217-31	3.8	160
158	Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. <i>Molecular Phylogenetics and Evolution</i> , 2011 , 61, 363-80	4.1	159
157	Rates and patterns in the evolution of snake-like body form in squamate reptiles: evidence for repeated re-evolution of lost digits and long-term persistence of intermediate body forms. <i>Evolution; International Journal of Organic Evolution</i> , 2008 , 62, 2042-64	3.8	155
156	Branch lengths, support, and congruence: testing the phylogenomic approach with 20 nuclear loci in snakes. <i>Systematic Biology</i> , 2008 , 57, 420-31	8.4	153
155	Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders. <i>Evolution; International Journal of Organic Evolution</i> , 2004 , 58, 2809-22	3.8	148

(2014-1997)

154	Phylogeny of the Spiny Lizards (Sceloporus) Based on Molecular and Morphological Evidence. <i>Herpetological Monographs</i> , 1997 , 11, 1	1.5	143	
153	Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2007 , 274, 919-28	4.4	142	
152	Climatic zonation drives latitudinal variation in speciation mechanisms. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2007 , 274, 2995-3003	4.4	139	
151	When are phylogenetic analyses misled by convergence? A case study in Texas cave salamanders. <i>Systematic Biology</i> , 2003 , 52, 501-14	8.4	138	
150	Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. <i>Evolution; International Journal of Organic Evolution</i> , 2012 , 66, 3687-700	3.8	133	
149	Recent responses to climate change reveal the drivers of species extinction and survival. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4211-4217	11.5	131	
148	Polymorphism in Systematics and Comparative Biology. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 1999 , 30, 327-362		131	
147	Commentary on Losos (2008): niche conservatism d¶vu. <i>Ecology Letters</i> , 2008 , 11, 1004-5; discussion 1005-7	10	129	
146	Inordinate Fondness Multiplied and Redistributed: the Number of Species on Earth and the New Pie of Life. <i>Quarterly Review of Biology</i> , 2017 , 92, 229-265	5.4	128	
145	An expanded phylogeny of treefrogs (Hylidae) based on nuclear and mitochondrial sequence data. <i>Molecular Phylogenetics and Evolution</i> , 2010 , 55, 871-82	4.1	123	
144	Incomplete taxa, incomplete characters, and phylogenetic accuracy: is there a missing data problem?. <i>Journal of Vertebrate Paleontology</i> , 2003 , 23, 297-310	1.7	121	
143	Highly incomplete taxa can rescue phylogenetic analyses from the negative impacts of limited taxon sampling. <i>PLoS ONE</i> , 2012 , 7, e42925	3.7	117	
142	How Should Genes and Taxa be Sampled for Phylogenomic Analyses with Missing Data? An Empirical Study in Iguanian Lizards. <i>Systematic Biology</i> , 2016 , 65, 128-45	8.4	116	
141	Herbivory increases diversification across insect clades. <i>Nature Communications</i> , 2015 , 6, 8370	17.4	113	
140	Phylogenetic origins of local-scale diversity patterns and the causes of Amazonian megadiversity. <i>Ecology Letters</i> , 2011 , 14, 643-52	10	112	
139	REPLICATE PATTERNS OF SPECIES RICHNESS, HISTORICAL BIOGEOGRAPHY, AND PHYLOGENY IN HOLARCTIC TREEFROGS. <i>Evolution; International Journal of Organic Evolution</i> , 2005 , 59, 2433-2450	3.8	109	
138	Combining Data Sets with Different Numbers of Taxa for Phylogenetic Analysis. <i>Systematic Biology</i> , 1995 , 44, 548-558	8.4	108	
137	Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. <i>Journal of Biogeography</i> , 2014 , 41, 429-442	4.1	107	

136	How does climate influence speciation?. American Naturalist, 2013, 182, 1-12	3.7	106
135	Ecological diversification and phylogeny of emydid turtles. <i>Biological Journal of the Linnean Society</i> , 2003 , 79, 577-610	1.9	106
134	Why are there so few fish in the sea?. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2012 , 279, 2323-9	4.4	105
133	Evolution of the Lizard Family Phrynosomatidae as Inferred from Diverse Types of Data. Herpetological Monographs, 1996 , 10, 43	1.5	104
132	A phylogenetic perspective on elevational species richness patterns in Middle American treefrogs: why so few species in lowland tropical rainforests?. <i>Evolution; International Journal of Organic Evolution</i> , 2007 , 61, 1188-207	3.8	103
131	Evolution of Sex-Biased Dispersal. <i>Quarterly Review of Biology</i> , 2016 , 91, 297-30	5.4	103
130	Discordant mitochondrial and nuclear gene phylogenies in emydid turtles: implications for speciation and conservation. <i>Biological Journal of the Linnean Society</i> , 2010 , 99, 445-461	1.9	100
129	Re-evolution of lost mandibular teeth in frogs after more than 200 million years, and re-evaluating Dollo's law. <i>Evolution; International Journal of Organic Evolution</i> , 2011 , 65, 1283-96	3.8	99
128	War of the Iguanas: conflicting molecular and morphological phylogenies and long-branch attraction in iguanid lizards. <i>Systematic Biology</i> , 2000 , 49, 143-59	8.4	97
127	Explaining Andean megadiversity: the evolutionary and ecological causes of glassfrog elevational richness patterns. <i>Ecology Letters</i> , 2013 , 16, 1135-44	10	94
126	Phylogenetic relationships of phrynosomatid lizards based on nuclear and mitochondrial data, and a revised phylogeny for Sceloporus. <i>Molecular Phylogenetics and Evolution</i> , 2010 , 54, 150-61	4.1	93
125	Rapid diversification, incomplete isolation, and the "speciation clock" in North American salamanders (Genus Plethodon): testing the hybrid swarm hypothesis of rapid radiation. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 2585-603	3.8	93
124	Does niche conservatism promote speciation? A case study in North American salamanders. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 2604-21	3.8	93
123	Phylogenetic evidence for competitively driven divergence: body-size evolution in Caribbean treefrogs (Hylidae: Osteopilus). <i>Evolution; International Journal of Organic Evolution</i> , 2009 , 63, 195-214	3.8	92
122	Should genes with missing data be excluded from phylogenetic analyses?. <i>Molecular Phylogenetics and Evolution</i> , 2014 , 80, 308-18	4.1	89
121	Can parallel diversification occur in sympatry? Repeated patterns of body-size evolution in coexisting clades of North American salamanders. <i>Evolution; International Journal of Organic Evolution</i> , 2009 , 63, 1769-84	3.8	88
120	Loss and re-evolution of complex life cycles in marsupial frogs: does ancestral trait reconstruction mislead?. <i>Evolution; International Journal of Organic Evolution</i> , 2007 , 61, 1886-99	3.8	83
119	Estimating divergence dates and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles. <i>Molecular Phylogenetics and Evolution</i> , 2012 , 65, 974-91	4.1	82

(2013-2006)

118	RAPID DIVERSIFICATION, INCOMPLETE ISOLATION, AND THE BPECIATION CLOCKIN NORTH AMERICAN SALAMANDERS (GENUS PLETHODON): TESTING THE HYBRID SWARM HYPOTHESIS OF RAPID RADIATION. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 2585-2603	3.8	82	
117	The accuracy of methods for coding and sampling higher-level taxa for phylogenetic analysis: a simulation study. <i>Systematic Biology</i> , 1998 , 47, 397-413	8.4	80	
116	A62 A major likelihood-based approach gives problematic estimates of diversification dynamics and rates. <i>Virus Evolution</i> , 2019 , 5,	3.7	78	
115	Evolutionary conservatism and convergence both lead to striking similarity in ecology, morphology and performance across continents in frogs. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2013 , 280, 20132156	4.4	74	
114	Evolution of sexual size dimorphisms in emydid turtles: ecological dimorphism, rensch's rule, and sympatric divergence. <i>Evolution; International Journal of Organic Evolution</i> , 2009 , 63, 910-25	3.8	74	
113	Diversity and niche evolution along aridity gradients in north american lizards (phrynosomatidae). <i>Evolution; International Journal of Organic Evolution</i> , 2013 , 67, 1715-28	3.8	73	
112	Testing Phylogenetic Methods with Tree Congruence: Phylogenetic Analysis of Polymorphic Morphological Characters in Phrynosomatid Lizards. <i>Systematic Biology</i> , 1998 , 47, 427-444	8.4	73	
111	Phylogenetic analysis and intraspecific variation: performance of parsimony, likelihood, and distance methods. <i>Systematic Biology</i> , 1998 , 47, 228-53	8.4	73	
110	Testing Convergence Versus History: Convergence Dominates Phenotypic Evolution for over 150 Million Years in Frogs. <i>Systematic Biology</i> , 2016 , 65, 146-60	8.4	70	
109	Diversification rates and species richness across the Tree of Life. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2016 , 283,	4.4	70	
108	Phylogenetic Insights on Evolutionary Novelties in Lizards and Snakes: Sex, Birth, Bodies, Niches, and Venom. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 2011 , 42, 227-244	13.5	68	
107	Accuracy of Phylogenetic Analysis Including and Excluding Polymorphic Characters. <i>Systematic Biology</i> , 1997 , 46, 332-345	8.4	67	
106	What are the consequences of combining nuclear and mitochondrial data for phylogenetic analysis? Lessons from Plethodon salamanders and 13 other vertebrate clades. <i>BMC Evolutionary Biology</i> , 2011 , 11, 300	3	66	
105	Faster diversification on land than sea helps explain global biodiversity patterns among habitats and animal phyla. <i>Ecology Letters</i> , 2015 , 18, 1234-1241	10	64	
104	EVOLUTION OF ADAPTIVE PLASTICITY: RISK-SENSITIVE HATCHING IN NEOTROPICAL LEAF-BREEDING TREEFROGS. <i>Ecological Monographs</i> , 2008 , 78, 205-224	9	63	
103	Rapid Diversification and Time Explain Amphibian Richness at Different Scales in the Tropical Andes, Earth's Most Biodiverse Hotspot. <i>American Naturalist</i> , 2017 , 190, 828-843	3.7	61	
102	Estimating diversification rates for higher taxa: BAMM can give problematic estimates of rates and rate shifts. <i>Evolution; International Journal of Organic Evolution</i> , 2018 , 72, 39-53	3.8	60	
101	What determines the climatic niche width of species? The role of spatial and temporal climatic variation in three vertebrate clades. <i>Global Ecology and Biogeography</i> , 2013 , 22, 422-432	6.1	59	

100	Phylogeny, ecology, and the origins of climatelichness relationships. <i>Ecology</i> , 2012 , 93, S167-S181	4.6	59
99	Phylogenetic Relationships and Systematic Revision of Central Texas Hemidactyliine Plethodontid Salamanders. <i>Herpetological Monographs</i> , 2000 , 14, 1	1.5	58
98	When do species-tree and concatenated estimates disagree? An empirical analysis with higher-level scincid lizard phylogeny. <i>Molecular Phylogenetics and Evolution</i> , 2015 , 82 Pt A, 146-55	4.1	56
97	Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2016 , 283,	4.4	55
96	Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families. <i>Biology Letters</i> , 2017 , 13,	3.6	54
95	Latitudinal variation in speciation mechanisms in frogs. <i>Evolution; International Journal of Organic Evolution</i> , 2010 , 64, 429-43	3.8	54
94	Do missing data influence the accuracy of divergence-time estimation with BEAST?. <i>Molecular Phylogenetics and Evolution</i> , 2015 , 85, 41-9	4.1	53
93	Paleontology, genomics, and combined-data phylogenetics: can molecular data improve phylogeny estimation for fossil taxa?. <i>Systematic Biology</i> , 2009 , 58, 87-99	8.4	53
92	Evolution of climatic niche specialization: a phylogenetic analysis in amphibians. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2014 , 281,	4.4	52
91	DOES NICHE CONSERVATISM PROMOTE SPECIATION? A CASE STUDY IN NORTH AMERICAN SALAMANDERS. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 2604	3.8	52
90	Convergence, divergence, and homogenization in the ecological structure of emydid turtle communities: the effects of phylogeny and dispersal. <i>American Naturalist</i> , 2004 , 164, 244-54	3.7	51
89	Molecular Phylogenetics and Evolution of Sexual Dichromatism among Populations of the Yarrow's Spiny Lizard (Sceloporus jarrovii). <i>Evolution; International Journal of Organic Evolution</i> , 1999 , 53, 1884	3.8	51
88	Testing the Relationships between Diversification, Species Richness, and Trait Evolution. <i>Systematic Biology</i> , 2016 , 65, 975-988	8.4	46
87	Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates. <i>Evolution; International Journal of Organic Evolution</i> , 2017 , 71, 1944-1959	3.8	45
86	The origin of species richness patterns along environmental gradients: uniting explanations based on time, diversification rate and carrying capacity. <i>Journal of Biogeography</i> , 2017 , 44, 722-735	4.1	45
85	Evaluating methods for phylogenomic analyses, and a new phylogeny for a major frog clade (Hyloidea) based on 2214 loci. <i>Molecular Phylogenetics and Evolution</i> , 2018 , 119, 128-143	4.1	44
84	Evolution of viviparity: a phylogenetic test of the cold-climate hypothesis in phrynosomatid lizards. <i>Evolution; International Journal of Organic Evolution</i> , 2013 , 67, 2614-30	3.8	43
83	Evolutionary lag times and recent origin of the biota of an ancient desert (Atacama-Sechura). Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11469-74	11.5	43

(2020-2017)

82	What explains patterns of biodiversity across the Tree of Life?: New research is revealing the causes of the dramatic variation in species numbers across branches of the Tree of Life. <i>BioEssays</i> , 2017 , 39, 1600128	4.1	42	
81	Is diversification rate related to climatic niche width?. Global Ecology and Biogeography, 2015, 24, 383-	39 6 .1	42	
80	Evolution of paedomorphosis in plethodontid salamanders: ecological correlates and re-evolution of metamorphosis. <i>Evolution; International Journal of Organic Evolution</i> , 2014 , 68, 466-82	3.8	42	
79	Microhabitat and Climatic Niche Change Explain Patterns of Diversification among Frog Families. <i>American Naturalist</i> , 2017 , 190, 29-44	3.7	40	
78	Polyploidization and Sex Chromosome Evolution in Amphibians 2012, 385-410		40	
77	Phylogenomic analyses reveal novel relationships among snake families. <i>Molecular Phylogenetics and Evolution</i> , 2016 , 100, 160-169	4.1	40	
76	MOLECULAR PHYLOGENETICS AND EVOLUTION OF SEXUAL DICHROMATISM AMONG POPULATIONS OF THE YARROW'S SPINY LIZARD (SCELOPORUS JARROVII). <i>Evolution; International Journal of Organic Evolution</i> , 1999 , 53, 1884-1897	3.8	39	
75	Evolutionary and ecological causes of species richness patterns in North American angiosperm trees. <i>Ecography</i> , 2015 , 38, 241-250	6.5	38	
74	How is the rate of climatic-niche evolution related to climatic-niche breadth?. <i>Evolution; International Journal of Organic Evolution</i> , 2012 , 66, 3836-51	3.8	38	
73	Parapatric divergence of sympatric morphs in a salamander: incipient speciation on Long Island?. <i>Molecular Ecology</i> , 2013 , 22, 4681-94	5.7	38	
72	Explaining large-scale patterns of vertebrate diversity. <i>Biology Letters</i> , 2015 , 11,	3.6	37	
71	BAMM gives misleading rate estimates in simulated and empirical datasets. <i>Evolution; International Journal of Organic Evolution</i> , 2018 , 72, 2257-2266	3.8	37	
70	Community assembly through evolutionary diversification and dispersal in Middle American treefrogs. <i>Evolution; International Journal of Organic Evolution</i> , 2009 , 63, 3228-47	3.8	36	
69	Decoupled evolution of display morphology and display behaviour in phrynosomatid lizards. <i>Biological Journal of the Linnean Society</i> , 2000 , 70, 597-612	1.9	36	
68	Polymorphic Characters in Phylogenetic Systematics. Systematic Biology, 1995, 44, 482	8.4	36	
67	What Explains Patterns of Diversification and Richness among Animal Phyla?. <i>American Naturalist</i> , 2017 , 189, 201-212	3.7	34	
66	When Are Phylogenetic Analyses Misled by Convergence? A Case Study in Texas Cave Salamanders. <i>Systematic Biology</i> , 2003 , 52, 501-514	8.4	31	
65	Niche Breadth: Causes and Consequences for Ecology, Evolution, and Conservation. <i>Quarterly Review of Biology</i> , 2020 , 95, 179-214	5.4	31	

64	Using historical biogeography to test for community saturation. <i>Ecology Letters</i> , 2014 , 17, 1077-85	10	29
63	Contrasting global-scale evolutionary radiations: phylogeny, diversification, and morphological evolution in the major clades of iguanian lizards. <i>Biological Journal of the Linnean Society</i> , 2013 , 108, 12	27 ⁻¹ 1 ⁹ 43	27
62	Repeated evolution and reversibility of self-fertilization in the volvocine green algae. <i>Evolution; International Journal of Organic Evolution,</i> 2018 , 72, 386-398	3.8	27
61	Why Are There So Many Flowering Plants? A Multiscale Analysis of Plant Diversification. <i>American Naturalist</i> , 2020 , 195, 948-963	3.7	26
60	The origins of acoustic communication in vertebrates. <i>Nature Communications</i> , 2020 , 11, 369	17.4	26
59	A Revised Phylogeny of Holarctic Treefrogs (Genus Hyla) Based on Nuclear and Mitochondrial DNA Sequences. <i>Herpetologica</i> , 2009 , 65, 246-259	1.9	26
58	Climatic niche divergence drives patterns of diversification and richness among mammal families. <i>Scientific Reports</i> , 2018 , 8, 8781	4.9	25
57	Extinction and time help drive the marine-terrestrial biodiversity gradient: is the ocean a deathtrap?. <i>Ecology Letters</i> , 2017 , 20, 911-921	10	23
56	Climatic-niche evolution follows similar rules in plants and animals. <i>Nature Ecology and Evolution</i> , 2020 , 4, 753-763	12.3	22
55	Diversification rates are more strongly related to microhabitat than climate in squamate reptiles (lizards and snakes). <i>Evolution; International Journal of Organic Evolution</i> , 2017 , 71, 2243-2261	3.8	22
54	Climatic niche breadth and species richness in temperate treefrogs. <i>Journal of Biogeography</i> , 2014 , 41, 1936-1946	4.1	21
53	Ecological causes of decelerating diversification in carnivoran mammals. <i>Evolution; International Journal of Organic Evolution</i> , 2013 , 67, 2423-33	3.8	21
52	Systematics and Herpetology in the Age of Genomics. <i>BioScience</i> , 2008 , 58, 297-307	5.7	21
51	Phylogenetic Relationships of Phrynosomatid Lizards and Monophyly of the Sceloporus Group. <i>Copeia</i> , 1993 , 1993, 287	1.1	20
50	Climate change is projected to outpace rates of niche change in grasses. <i>Biology Letters</i> , 2016 , 12,	3.6	20
49	What explains patterns of species richness? The relative importance of climatic-niche evolution, morphological evolution, and ecological limits in salamanders. <i>Ecology and Evolution</i> , 2016 , 6, 5940-9	2.8	20
48	Multicellularity Drives the Evolution of Sexual Traits. <i>American Naturalist</i> , 2018 , 192, E93-E105	3.7	19
47	Testing the role of climate in speciation: New methods and applications to squamate reptiles (lizards and snakes). <i>Molecular Ecology</i> , 2018 , 27, 2754-2769	5.7	19

(2020-2018)

46	What explains high plant richness in East Asia? Time and diversification in the tribe Lysimachieae (Primulaceae). <i>New Phytologist</i> , 2018 , 219, 436-448	9.8	18
45	Comparing macroecological patterns across continents: evolution of climatic niche breadth in varanid lizards. <i>Ecography</i> , 2017 , 40, 960-970	6.5	18
44	Digit reduction, body size, and paedomorphosis in salamanders. Evolution & Development, 2008, 10, 449)- <u>63</u> 6	18
43	PHYLOGENETIC RELATIONSHIPS OF HOPLOCERCID LIZARDS: CODING AND COMBINING MERISTIC, MORPHOMETRIC, AND POLYMORPHIC DATA USING STEP MATRICES. <i>Herpetologica</i> , 2003 , 59, 375-398	1.9	18
42	Explaining the ocean's richest biodiversity hotspot and global patterns of fish diversity. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2018 , 285,	4.4	18
41	A phylogenetic hot spot for evolutionary novelty in Middle American treefrogs. <i>Evolution; International Journal of Organic Evolution</i> , 2007 , 61, 2075-85	3.8	17
40	Replicate patterns of species richness, historical biogeography, and phylogeny in Holarctic treefrogs. <i>Evolution; International Journal of Organic Evolution</i> , 2005 , 59, 2433-50	3.8	17
39	Patterns, Mechanisms and Genetics of Speciation in Reptiles and Amphibians. <i>Genes</i> , 2019 , 10,	4.2	16
38	Why is fruit colour so variable? Phylogenetic analyses reveal relationships between fruit-colour evolution, biogeography and diversification. <i>Global Ecology and Biogeography</i> , 2019 , 28, 891-903	6.1	16
37	Songs versus colours versus horns: what explains the diversity of sexually selected traits?. <i>Biological Reviews</i> , 2020 , 95, 847-864	13.5	16
36	Evolution of rapid development in spadefoot toads is unrelated to arid environments. <i>PLoS ONE</i> , 2014 , 9, e96637	3.7	15
35	Climate change, extinction, and Sky Island biogeography in a montane lizard. <i>Molecular Ecology</i> , 2019 , 28, 2610-2624	5.7	14
34	Rapid niche shifts in introduced species can be a million times faster than changes among native species and ten times faster than climate change. <i>Journal of Biogeography</i> , 2019 , 46, 2115-2125	4.1	14
33	Character Definitions, Sexual Selection, and the Evolution of Swordtails. <i>American Naturalist</i> , 1996 , 147, 866-869	3.7	14
32	Evolution of diet across the animal tree of life. Evolution Letters, 2019, 3, 339-347	5.3	12
31	Estimating rates and patterns of morphological evolution from phylogenies: lessons in limb lability from Australian Lerista lizards. <i>Journal of Biology</i> , 2009 , 8, 19		12
30	Time Explains Regional Richness Patterns within Clades More Often than Diversification Rates or Area. <i>American Naturalist</i> , 2019 , 193, 514-529	3.7	12
29	Higher temperatures lower rates of physiological and niche evolution. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2020 , 287, 20200823	4.4	11

28	WHY DOES A TRAIT EVOLVE MULTIPLE TIMES WITHIN A CLADE? REPEATED EVOLUTION OF SNAKELIKE BODY FORM IN SQUAMATE REPTILES. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 123	3.8	9
27	RAPID DIVERSIFICATION, INCOMPLETE ISOLATION, AND THE SPECIATION CLOCKIN NORTH AMERICAN SALAMANDERS (GENUS PLETHODON): TESTING THE HYBRID SWARM HYPOTHESIS OF RAPID RADIATION. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 2585	3.8	9
26	The Tortoise and the Finch: Testing for island effects on diversification using two iconic Galpagos radiations. <i>Journal of Biogeography</i> , 2018 , 45, 1701-1712	4.1	9
25	Patterns of Local Community Composition Are Linked to Large-Scale Diversification and Dispersal of Clades. <i>American Naturalist</i> , 2018 , 191, 184-196	3.7	8
24	Inferring introgression using RADseq and D : Power and pitfalls revealed in a case study of spiny lizards (Sceloporus). <i>Molecular Ecology Resources</i> , 2019 , 19, 818-837	8.4	8
23	Speciation across the Tree of Life. <i>Biological Reviews</i> , 2021 , 96, 1205-1242	13.5	7
22	Do Alignment and Trimming Methods Matter for Phylogenomic (UCE) Analyses?. <i>Systematic Biology</i> , 2021 , 70, 440-462	8.4	7
21	Correlated and decoupled evolution of adult and larval body size in frogs. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2020 , 287, 20201474	4.4	6
20	Species interactions have predictable impacts on diversification. <i>Ecology Letters</i> , 2021 , 24, 239-248	10	5
19	Large-scale evolution of body temperatures in land vertebrates. <i>Evolution Letters</i> , 2021 , 5, 484-494	5.3	4
18	Weapon performance drives weapon evolution. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2021 , 288, 20202898	4.4	4
17	Decoupled evolution of display morphology and display behaviour in phrynosomatid lizards		4
16	SuperCRUNCH: A bioinformatics toolkit for creating and manipulating supermatrices and other large phylogenetic datasets. <i>Methods in Ecology and Evolution</i> , 2020 , 11, 763-772	7.7	3
15	Diversification rates, clade ages, and macroevolutionary methods. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 24400	11.5	3
14	Defensive structures influence fighting outcomes. Functional Ecology, 2021, 35, 696-704	5.6	3
13	Testing for adaptive radiation: A new approach applied to Madagascar frogs. <i>Evolution;</i> International Journal of Organic Evolution, 2021 , 75, 3008-3025	3.8	3
12	REPLICATE PATTERNS OF SPECIES RICHNESS, HISTORICAL BIOGEOGRAPHY, AND PHYLOGENY IN HOLARCTIC TREEFROGS. <i>Evolution; International Journal of Organic Evolution</i> , 2005 , 59, 2433	3.8	2
11	Multicellularity and sex helped shape the Tree of Life. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2021 , 288, 20211265	4.4	2

LIST OF PUBLICATIONS

10	Vast (but avoidable) underestimation of global biodiversity. <i>PLoS Biology</i> , 2021 , 19, e3001192	9.7	2
9	Sexual Dichromatism Is Decoupled from Diversification over Deep Time in Fishes. <i>American Naturalist</i> , 2021 , 198, 232-252	3.7	2
8	perspective: Why biogeography matters: historical biogeography vs. phylogeography and community phylogenetics for inferring ecological and evolutionary processes. <i>Frontiers of Biogeography</i> , 2012 , 4,	2.9	1
7	Corrigendum to Quintero & Wiens (2013). Ecology Letters, 2013, 16, 1516-1516	10	1
6	SuperCRUNCH: A bioinformatics toolkit for creating and manipulating supermatrices and other large phylogenetic datasets		1
5	Do sexually selected weapons drive diversification?. <i>Evolution; International Journal of Organic Evolution</i> , 2021 , 75, 2411-2424	3.8	1
4	Phylogeny of terraranan frogs based on 2,665 loci and impacts of missing data on phylogenomic analyses. <i>Systematics and Biodiversity</i> , 2021 , 1-16	1.7	1
3	Testing the causes of richness patterns in the paleotropics: time and diversification in cycads (Cycadaceae). <i>Ecography</i> ,	6.5	1
2	Do mutualistic interactions last longer than antagonistic interactions?. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2021 , 288, 20211457	4.4	О
1	Demystifying the marine-terrestrial biodiversity gradient: response to Vermeij et´al. <i>Ecology Letters</i> , 2018 , 21, 940-941	10	