
Zoran Jaksic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9212839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A family of perforated submicrometer core–shell plasmonic particles bio-inspired by leafhopper brochosomes. Optical and Quantum Electronics, 2022, 54, .	1.5	1
2	Optimized Design of a Self-Biased Amplifier for Seizure Detection Supplied by Piezoelectric Nanogenerator: Metaheuristic Algorithms versus ANN-Assisted Goal Attainment Method. Micromachines, 2022, 13, 1104.	1.4	1
3	Modelling of plasmonic biosensor temporal response influenced by competitive adsorption and analyte depletion. Measurement Science and Technology, 2021, 32, 095701.	1.4	2

Equilibrium fluctuations in chemical reactions: a viable source of random data (numbers, maps and) Tj ETQq000 rgBT /Overlock 10 Tf 5

5	Al Assisted Optimization of Unimorph Tapered Cantilever for Piezoelectric Energy Harvesting. , 2021, , .		0
6	Plasmonic Crystals with Conical Perforations as Multipurpose Optical Elements. , 2021, , .		0
7	MEMS resonator mass loading noise model: The case of bimodal adsorbing surface and finite adsorbate amount. Facta Universitatis - Series Electronics and Energetics, 2021, 34, 367-380.	0.6	0
8	Brochosome-Inspired Metal-Containing Particles as Biomimetic Building Blocks for Nanoplasmonics: Conceptual Generalizations. Biomimetics, 2021, 6, 69.	1.5	3
9	Temporal response of biochemical and biological sensors with bimodal surface adsorption from a finite sample. Microsystem Technologies, 2020, 27, 1-7.	1.2	2
10	Monolayer Gas Adsorption on Graphene-Based Materials: Surface Density of Adsorption Sites and Adsorption Capacity. Surfaces, 2020, 3, 423-432.	1.0	4
11	Monolithically Integrated Diffused Silicon Two-Zone Heaters for Silicon-Pyrex Class Microreactors for Production of Nanoparticles: Heat Exchange Aspects. Micromachines, 2020, 11, 818.	1.4	4
12	Optical field concentrator with low absorption metasurfaces based on planar silicon nanoantennas on silica. Solid State Electronics Letters, 2020, 2, 55-58.	1.0	0
13	Biomimetic Nanomembranes: An Overview. Biomimetics, 2020, 5, 24.	1.5	29
14	Broadband enhancement of devices and microsystems for light harvesting and photocatalysis. Optical and Quantum Electronics, 2020, 52, 1.	1.5	1
15	Electromagnetic simulation of MXene-based plasmonic metamaterials with enhanced optical absorption. Optical and Quantum Electronics, 2020, 52, 1.	1.5	20
16	The time response of plasmonic sensors due to binary adsorption: analytical versus numerical modeling. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	3
17	Arrays of Bowtie Plasmonic Nanoantennas for Field Enhancement in MOEMS. , 2019, , .		0
18	Reviewing MXenes for Plasmonic Applications: Beyond Graphene. , 2019, , .		2

#	Article	IF	CITATIONS
19	On Oscillations and Noise in Multicomponent Adsorption: The Nature of Multiple Stationary States. Advances in Mathematical Physics, 2019, 2019, 1-12.	0.4	5
20	Semiconductor-dielectric metasurfaces for low-loss field concentrators in the optical range. , 2019, , .		0
21	Modeling Noise and Stability of Affinity-Based MEMS, NEMS and NOEMS Sensors of Ternary Gas Mixtures. , 2019, , .		0
22	Subwavelength nickel-copper multilayers as an alternative plasmonic material. Optical and Quantum Electronics, 2018, 50, 1.	1.5	3
23	Multiscale in modelling and validation for solar photovoltaics. EPJ Photovoltaics, 2018, 9, 10.	0.8	6
24	Methods of decreasing losses in optical metamaterials. Facta Universitatis - Series Electronics and Energetics, 2018, 31, 501-518.	0.6	1
25	Tamm plasmon modes on semi-infinite metallodielectric superlattices. Scientific Reports, 2017, 7, 3746.	1.6	3
26	Phase integral approach to wave propagation in continuously graded models of flat lenses. , 2017, , .		0
27	Tailorable effective optical response of dual-metal plasmonic crystals. , 2017, , .		0
28	A method enabling simultaneous pressure and temperature measurement using a single piezoresistive MEMS pressure sensor. Measurement Science and Technology, 2016, 27, 125101.	1.4	7
29	Limits to optical chemical sensing fluctuations versus ultimate performance. , 2016, , .		0
30	Nonlocal effects in double fishnet metasurfaces nanostructured at deep subwavelength level as a path toward simultaneous sensing of multiple chemical analytes. Photonics and Nanostructures - Fundamentals and Applications, 2016, 18, 36-42.	1.0	2
31	Exact analytical solution for fields in a lossy cylindrical structure with hyperbolic tangent gradient index metamaterials. Optical and Quantum Electronics, 2016, 48, 1.	1.5	5
32	Field localization control in aperture-based plasmonics by Boolean superposition of primitive forms at deep subwavelength scale. Optical and Quantum Electronics, 2016, 48, 1.	1.5	4
33	EXACT ANALYTICAL SOLUTION FOR FIELDS IN A LOSSY CYLINDRICAL STRUCTURE WITH LINEAR GRADIENT INDEX METAMATERIALS. Progress in Electromagnetics Research, 2015, 151, 109-117.	1.6	6
34	Super Unit Cells in Aperture-Based Metamaterials. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	2
35	A low-loss double-fishnet metamaterial based on transparent conductive oxide. Physica Scripta, 2014, T162, 014048.	1.2	3
36	Adsorption-induced fluctuations and noise in plasmonic metamaterial devices. Physica Scripta, 2014, T162, 014047.	1.2	6

#	Article	IF	CITATIONS
37	Nanoplasmonic chemical sensors. , 2014, , .		Ο
38	Lagergren kinetic model and multianalyte detection by plasmonic sensors. , 2014, , .		0
39	Plasmonic sensors in multi-analyte environment: Rate constants and transient analysis. Chemical Engineering Research and Design, 2014, 92, 91-101.	2.7	11
40	Fluctuations in transient response of adsorption-based plasmonic sensors. Sensors and Actuators B: Chemical, 2014, 190, 419-428.	4.0	17
41	Intelligent thermal vacuum sensors based on multipurpose thermopile MEMS chips. Vacuum, 2014, 101, 118-124.	1.6	23
42	Suppression of noise in semiconductor infrared detectors using plasmonics. Journal of Optics (United Kingdom), 2014, 16, 125011.	1.0	7
43	Plasmonic metamaterial with fishnet superlattice for enhanced chemical sensing. , 2014, , .		0
44	Micro and Nanophotonics for Semiconductor Infrared Detectors. , 2014, , .		9
45	Plasmonic enhancement of light trapping in photodetectors. Facta Universitatis - Series Electronics and Energetics, 2014, 27, 183-203.	0.6	2
46	Butterfly scales as bionic templates for complex ordered nanophotonic materials: A pathway to biomimetic plasmonics. Optical Materials, 2013, 35, 1869-1875.	1.7	6
47	Monolayer gas adsorption in plasmonic sensors: Comparative analysis of kinetic models. Russian Journal of Physical Chemistry A, 2013, 87, 2134-2139.	0.1	8
48	Designed surface modes propagating along hyperbolic metamaterials. , 2013, , .		0
49	Exact analytical solution for fields in gradient index metamaterials with different loss factors in negative and positive refractive index segments. Journal of Nanophotonics, 2013, 7, 073086.	0.4	9
50	Gradient-index infrared metamaterials based on metal-dielectric submicrometer pillar arrays. , 2013, , .		0
51	Dyakonons in hyperbolic metamaterials. Photonics Letters of Poland, 2013, 5, .	0.2	3
52	Nanotechnological Enhancement of Infrared Detectors by Plasmon Resonance in Transparent Conductive Oxide Nanoparticles. Strojniski Vestnik/Journal of Mechanical Engineering, 2012, 58, 367-375.	0.6	10
53	Oblique surface waves at an interface between a metal–dielectric superlattice and an isotropic dielectric. Physica Scripta, 2012, T149, 014041.	1.2	19
54	Substantial enlargement of angular existence range for Dyakonov-like surface waves at semi-infinite metal-dielectric superlattice. Journal of Nanophotonics, 2012, 6, 063525.	0.4	17

#	Article	IF	CITATIONS
55	Lossy gradient index transmission optics with arbitrary periodic permittivity and permeability and constant impedance throughout the structure. Journal of Optics (United Kingdom), 2012, 14, 065102.	1.0	12
56	Functionalization of plasmonic metamaterials utilizing metal–organic framework thin films. Physica Scripta, 2012, T149, 014051.	1.2	3
57	Field effect transistor based on ions as charge carriers. Sensors and Actuators B: Chemical, 2012, 170, 137-142.	4.0	13
58	Surface waves in plasmonic anisotropie media. , 2012, , .		0
59	Transfer of nanomembranes from solution to a solid frame via reflow of low surface tension liquids. , 2012, , .		0
60	The poissonian nature of adsorption-desorption processes. , 2012, , .		0
61	Analysis of transients in adsorption-desorption at the surface of plasmonic sensors: Nonlinear versus linear approach. , 2012, , .		1
62	Redshifting approach for nanoplasmonic enhancement of semiconductor infrared detectors. , 2012, , .		0
63	Enhancing performance of nanohole-based plasmonic sensors by transparent conductive oxides. , 2012, , .		1
64	Dispersion, diffraction and surface waves in semi-infinite metal-dielectric superlattices. , 2012, , .		1
65	Dyakonov-like surface waves in semi-infinite metal-dielectric lattices. , 2012, , .		0
66	Analytical approach to lossy wave propagation through a graded interface containing negative index material. , 2011, , .		0
67	Bionic (Nano) Membranes. Biological and Medical Physics Series, 2011, , 9-24.	0.3	2
68	Intelligent Thermopile-Based Vacuum Sensor. Procedia Engineering, 2011, 25, 575-578.	1.2	5
69	Nanomembrane-based plasmonics. Journal of Nanophotonics, 2011, 5, 051818.	0.4	16
70	Plasmonic crystal waveguides. Applied Physics A: Materials Science and Processing, 2011, 103, 615-617.	1.1	11
71	Lossy gradient index metamaterial with sinusoidal periodicity of refractive index: case of constant impedance throughout the structure. Journal of Nanophotonics, 2011, 5, 051804.	0.4	15

72 Plasmon-driven nondiffracting surface beaming., 2011, , .

#	Article	IF	CITATIONS
73	Negative Refractive Index Metasurfaces for Enhanced Biosensing. Materials, 2011, 4, 1-36.	1.3	81
74	Contactless Methods for Characterization of Mechanical Properties of Nanomembranes: An Overview of Methods. , 2011, , .		1
75	Adsorption–desorption noise in plasmonic chemical/biological sensors for multiple analyte environment. Microsystem Technologies, 2010, 16, 735-743.	1.2	12
76	A comparative analyze of fundamental noise in cantilever sensors based on lateral and longitudinal displacement: case of thermal infrared detectors. Microsystem Technologies, 2010, 16, 755-763.	1.2	11
77	Field effect transistor based on protons as charge carriers. Procedia Engineering, 2010, 5, 1368-1371.	1.2	Ο
78	Three-dimensional surface sculpting of freestanding metal-composite nanomembranes. Microelectronic Engineering, 2010, 87, 1487-1490.	1.1	4
79	Plasmon modes on laminated nanomembrane-based waveguides. Journal of Nanophotonics, 2010, 4, 041770.	0.4	10
80	Transparent conductive oxide nanoparticle-based layers for laminar plasmonic devices. , 2010, , .		0
81	Functionalization of Artificial Freestanding Composite Nanomembranes. Materials, 2010, 3, 165-200.	1.3	33
82	Design of symmetric planar fishnet metamaterials for optical wavelength range. , 2010, , .		0
83	Micromechanical sensors based on lateral and longitudinal displacement of a cantilever sensing element: a comparative performance study. Proceedings of SPIE, 2009, , .	0.8	1
84	Adsorption-desorption noise in plasmonic chemical/biological sensors in multiple analyte environment. Proceedings of SPIE, 2009, , .	0.8	0
85	Performance limits to the operation of nanoplasmonic chemical sensors: noise-equivalent refractive index and detectivity. Journal of Nanophotonics, 2009, 3, 031770.	0.4	19
86	Simple and reliable technology for manufacturing metal-composite nanomembranes with giant aspect ratio. Microelectronic Engineering, 2009, 86, 906-909.	1.1	17
87	Exact analytical treatment of the graded interfaces between positive and negative refractive index media. , 2009, , .		1
88	Fishnet-Based Metamaterials: Spectral Tuning Through Adsorption Mechanism. Acta Physica Polonica A, 2009, 116, 625-627.	0.2	8
89	Vacuum Fluctuations in Optical Metamaterials Containing Nonlinear Dielectrics. Acta Physica Polonica A, 2009, 116, 628-630.	0.2	1
90	Thermal radiation antennas made of multilayer structures containing negative index metamaterials. Proceedings of SPIE, 2008, , .	0.8	5

#	Article	IF	CITATIONS
91	Metal-dielectric photonic crystal for the enhancement of solar-blind ultraviolet silicon photodiodes. , 2008, , .		1
92	A consideration of optical noise figures of adsorption-based nanophotonic sensors. , 2008, , .		0
93	Metal nanowire arrays with ultralow or negative effective permittivity for adsorption-based chemical sensing. , 2008, , .		0
94	A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance. Journal of Optics, 2007, 9, S377-S384.	1.5	60
95	Transmission Spectra of Thue-Morse Multilayers Containing Negative Index Metamaterials. Acta Physica Polonica A, 2007, 112, 1049-1054.	0.2	5
96	Surface Plasmon-Polariton Assisted Metal-Dielectric Multilayers as Passband Filters for Ultraviolet Range. Acta Physica Polonica A, 2007, 112, 953-958.	0.2	4
97	A simplified analytical approach to calculation of the electromagnetic behavior of left-handed metamaterials with a graded refractive index profile. Science of Sintering, 2007, 39, 185-191.	0.5	3
98	Scanning Probe-Shaped Nanohole Arrays with Extraordinary Optical Transmission as Platform for Enhanced Surface Plasmon-Based Biosensing. , 2006, , .		1
99	Emittance and absorptance tailoring by negative refractive index metamaterial-based Cantor multilayers. Journal of Optics, 2006, 8, 355-362.	1.5	32
100	Fabrication-induced disorder in structures for nanophotonics. Microelectronic Engineering, 2006, 83, 1792-1797.	1.1	10
101	Nanofabrication of negative refractive index metasurfaces. Microelectronic Engineering, 2006, 83, 1786-1791.	1.1	6
102	Subwavelength hole arrays with nanoapertures fabricated by scanning probe nanolithography. Science of Sintering, 2006, 38, 117-123.	0.5	2
103	Nanofabrication of planar split ring resonators for negative refractive index metamaterials in the infrared range. Journal of the Serbian Chemical Society, 2006, 71, 695-703.	0.4	1
104	Modification of thermal radiation by periodical structures containing negative refractive index metamaterials. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 342, 497-503.	0.9	20
105	Silver–silica transparent metal structures as bandpass filters for the ultraviolet range. Journal of Optics, 2005, 7, 51-55.	1.5	49
106	Cavity Enhancement of Auger-Suppressed Detectors: A Way to Background-Limited Room-Temperature Operation in 3–14- <tex>\$mu\$</tex> m Range. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10, 771-776.	1.9	11
107	Photonic crystal enhancement of auger-suppressed infrared photodetectors. AIP Conference Proceedings, 2001, , .	0.3	0
108	Optimised high-frequency performance of Auger-suppressed magnetoconcentration photoconductors. Microelectronics Journal, 2000, 31, 981-990.	1.1	4

#	Article	IF	CITATIONS
109	Enhancement of radiative lifetime in semiconductors using photonic crystals. Infrared Physics and Technology, 1999, 40, 25-32.	1.3	10
110	Composition profiles versus growth pressure and temperature in epitaxial HgZnTe layers. Physica Status Solidi A, 1995, 152, 451-459.	1.7	0
111	Erratum to "a simple approximative method for determination of Auger 1 lifetime in degenerate narrow gap semiconductors― Infrared Physics and Technology, 1995, 36, 819.	1.3	0
112	Composition profiles of (Hg,Cd)Te liquid phase epitaxy layers grown from Te-rich solution. Journal of Crystal Growth, 1994, 143, 176-183.	0.7	3
113	Some theoretical and technological aspects of uncooled HgCdTe detectors: a review. Microelectronics Journal, 1994, 25, 99-114.	1.1	12
114	Spectral characteristics of high temperature IR photodetectors with electromagnetic carrier depletion. Infrared Physics and Technology, 1994, 35, 585-591.	1.3	1
115	A simple approximative method for determination of Auger 1 lifetime in degenerate narrow gap semiconductors. Infrared Physics, 1993, 34, 601-605.	0.5	2
116	Auger generation suppression in narrowâ€gap semiconductors using the magnetoconcentration effect. Journal of Applied Physics, 1992, 71, 5706-5708.	1.1	11
117	Isothermal vapor phase epitaxy of (Hg,Cd) Te from Te-rich Hg1â^'yTey source. Journal of Crystal Growth, 1991, 108, 710-718.	0.7	7
118	Some peculiarities of (Hg, Cd) Te liquid-phase epitaxial growth in a semi-closed, two-zone system. Journal of Materials Science: Materials in Electronics, 1991, 2, 63-71.	1.1	4
119	Local growth of HgCdTe layers by isothermal vapour phase epitaxy. Electronics Letters, 1990, 26, 1005.	0.5	3
120	IR photodetector with exclusion effect and self-filtering n+ layer. Electronics Letters, 1990, 26, 929.	0.5	2
121	Back side reflection influence on quantum efficiency of photovoltaic devices. Electronics Letters, 1988, 24, 1100.	0.5	7
122	Ambient temperature HgCdTe photoconductor can achieve detectivity higher than 1×108cm Hz1/2/W at 10.6μm. Electronics Letters, 1988, 24, 1590.	0.5	10
123	Modeling of composition profiles of mercury cadmium telluride liquid phase epitaxial double heterostructures. , 0, , .		0
124	Simple approximation for absorption coefficient in degenerate HgCdTe. , 0, , .		5
125	Dispersion of refractive index in degenerate mercury cadmium telluride. , 0, , .		2
126	Transient response of HgCdTe Auger-suppressed magnetoconcentration photoconductors. , 0, , .		0

#	Article	IF	CITATIONS
127	Analysis of radiation absorptance in silicon ultraviolet detector. , 0, , .		ο
128	Simple quasi-3D photonic crystal planar optical waveguides. , 0, , .		0
129	A consideration of fabrication-induced imperfections in photonic crystals for optical frequencies. , 0, , .		Ο
130	Ambient-temperature operation of nonequilibrium magnetoconcentration infrared detectors in InSb and HgCdTe. , 0, , .		0
131	Extraction photodiodes with auger suppression for all-weather free-space optical communication. , 0, , .		2
132	Light modulation utilizing photonic crystal-based photoelastic elements with dual built-in defect. , 0, , .		2
133	Method of microcantilever deflection measurement utilizing mechanochromic effect in photonic crystals. , 0, , .		Ο
134	MEMS accelerometer with all-optical readout based on twin-defect photonic crystal waveguide. , 0, , .		3
135	Electromagnetic Structures Containing Negative Refractive Index Metamaterials. , 0, , .		3
136	DBR Active Optical Filters Incorporating Negative Refractive Index Metamaterials. , 0, , .		1
137	A Consideration of Transparent Metal Structures for Subwavelength Diffraction Management. , 0, , .		1
138	Plasmonic waveguides based on synthetic nanomembranes. SPIE Newsroom, 0, , .	0.1	0