
Xiaoping Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9212676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	2.7	135
2	Does the Belt and Road Initiative Really Increase CO ₂ Emissions?. Annals of the American Association of Geographers, 2022, 112, 948-967.	1.5	3
3	Developing a data-fusing method for mapping fine-scale urban three-dimensional building structure. Sustainable Cities and Society, 2022, 80, 103716.	5.1	16
4	Global impacts of future urban expansion on terrestrial vertebrate diversity. Nature Communications, 2022, 13, 1628.	5.8	103
5	Three-Dimensional Simulation Model for Synergistically Simulating Urban Horizontal Expansion and Vertical Growth. Remote Sensing, 2022, 14, 1503.	1.8	5
6	Global land projection based on plant functional types with a 1-km resolution under socio-climatic scenarios. Scientific Data, 2022, 9, 125.	2.4	33
7	Influence of urbanization on hourly extreme precipitation over China. Environmental Research Letters, 2022, 17, 044010.	2.2	17
8	Simulating mixed land-use change under multi-label concept by integrating a convolutional neural network and cellular automata: a case study of Huizhou, China. GIScience and Remote Sensing, 2022, 59, 609-632.	2.4	23
9	Simulating multiple urban land use changes by integrating transportation accessibility and a vector-based cellular automata: a case study on city of Toronto. Geo-Spatial Information Science, 2022, 25, 439-456.	2.4	12
10	A land clearing index for high-frequency unsupervised monitoring of land development using multi-source optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187, 393-421.	4.9	2
11	Generating continuous fine-scale land cover mapping by edge-guided maximum a posteriori based spatiotemporal sub-pixel mapping. Science of Remote Sensing, 2022, 5, 100041.	2.2	1
12	Tensor A: A highâ€performance cellular automata model for land use simulation based on vectorization and GPU. Transactions in GIS, 2022, 26, 755-778.	1.0	3
13	Integrating a deep forest algorithm with vectorâ€based cellular automata for urban land change simulation. Transactions in GIS, 2022, 26, 2056-2080.	1.0	8
14	Deep Subpixel Mapping Based on Semantic Information Modulated Network for Urban Land Use Mapping. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 10628-10646.	2.7	62
15	Amplified Increases of Compound Hot Extremes Over Urban Land in China. Geophysical Research Letters, 2021, 48, e2020GL091252.	1.5	28
16	Critical role of temporal contexts in evaluating urban cellular automata models. GIScience and Remote Sensing, 2021, 58, 799-811.	2.4	10
17	30 m global impervious surface area dynamics and urban expansion pattern observed by Landsat satellites: From 1972 to 2019. Science China Earth Sciences, 2021, 64, 1922-1933.	2.3	74
18	Future "local climate zone―spatial change simulation in Greater Bay Area under the shared socioeconomic pathways and ecological control line. Building and Environment, 2021, 203, 108077.	3.0	24

#	Article	IF	CITATIONS
19	Mapping the annual dynamics of cultivated land in typical area of the Middle-lower Yangtze plain using long time-series of Landsat images based on Google Earth Engine. International Journal of Remote Sensing, 2020, 41, 1625-1644.	1.3	17
20	Assessing the contributions of climate change and human activities to cropland productivity by means of remote sensing. International Journal of Remote Sensing, 2020, 41, 2004-2021.	1.3	6
21	Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of Environment, 2020, 236, 111510.	4.6	535
22	Domain Adaption for Fine-Grained Urban Village Extraction From Satellite Images. IEEE Geoscience and Remote Sensing Letters, 2020, 17, 1430-1434.	1.4	60
23	Projections of land use changes under the plant functional type classification in different SSP-RCP scenarios in China. Science Bulletin, 2020, 65, 1935-1947.	4.3	86
24	High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nature Sustainability, 2020, 3, 564-570.	11.5	391
25	Coupling fuzzy clustering and cellular automata based on local maxima of development potential to model urban emergence and expansion in economic development zones. International Journal of Geographical Information Science, 2020, 34, 1930-1952.	2.2	44
26	Global protected areas boost the carbon sequestration capacity: Evidences from econometric causal analysis. Science of the Total Environment, 2020, 715, 137001.	3.9	23
27	Global projections of future urban land expansion under shared socioeconomic pathways. Nature Communications, 2020, 11, 537.	5.8	336
28	The delineation of urban growth boundaries in complex ecological environment areas by using cellular automata and a dual-environmental evaluation. Journal of Cleaner Production, 2020, 256, 120361.	4.6	42
29	Multiple intra-urban land use simulations and driving factors analysis: a case study in Huicheng, China. GIScience and Remote Sensing, 2019, 56, 282-308.	2.4	68
30	Geospatial Big Data: New Paradigm of Remote Sensing Applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 3841-3851.	2.3	35
31	Impacts of Urban Expansion on Terrestrial Carbon Storage in China. Environmental Science & Technology, 2019, 53, 6834-6844.	4.6	90
32	Building Footprint Extraction from High-Resolution Images via Spatial Residual Inception Convolutional Neural Network. Remote Sensing, 2019, 11, 830.	1.8	134
33	Will the Development of a High-Speed Railway Have Impacts on Land Use Patterns in China?. Annals of the American Association of Geographers, 2019, 109, 979-1005.	1.5	19
34	Cumulative Effects of Climatic Factors on Terrestrial Vegetation Growth. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 789-806.	1.3	90
35	Urban heat island: Aerodynamics or imperviousness?. Science Advances, 2019, 5, eaau4299.	4.7	179
36	Urban Land Use and Land Cover Classification Using Multisource Remote Sensing Images and Social Media Data. Remote Sensing, 2019, 11, 2719.	1.8	36

#	Article	IF	CITATIONS
37	Simulating urban growth boundaries using a patch-based cellular automaton with economic and ecological constraints. International Journal of Geographical Information Science, 2019, 33, 55-80.	2.2	57
38	Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model. Science of the Total Environment, 2019, 658, 936-946.	3.9	166
39	Tele-connecting China's future urban growth to impacts on ecosystem services under the shared socioeconomic pathways. Science of the Total Environment, 2019, 652, 765-779.	3.9	79
40	Non-uniform time-lag effects of terrestrial vegetation responses to asymmetric warming. Agricultural and Forest Meteorology, 2018, 252, 130-143.	1.9	53
41	Nonuniform Time-Lag Effects of Asymmetric Warming on Net Primary Productivity across Global Terrestrial Biomes. Earth Interactions, 2018, 22, 1-26.	0.7	14
42	Direct and indirect loss of natural habitat due to built-up area expansion: A model-based analysis for the city of Wuhan, China. Land Use Policy, 2018, 74, 231-239.	2.5	106
43	Road Detection From Remote Sensing Images by Generative Adversarial Networks. IEEE Access, 2018, 6, 25486-25494.	2.6	71
44	One-class remote sensing classification: one-class vs. binary classifiers. International Journal of Remote Sensing, 2018, 39, 1890-1910.	1.3	27
45	High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sensing of Environment, 2018, 209, 227-239.	4.6	448
46	Simulating urban dynamics in China using a gradient cellular automata model based on S-shaped curve evolution characteristics. International Journal of Geographical Information Science, 2018, 32, 73-101.	2.2	44
47	Spatial and Temporal Dynamics of Urban Expansion along the Guangzhou–Foshan Inter-City Rail Transit Corridor, China. Sustainability, 2018, 10, 593.	1.6	31
48	Stronger Contributions of Urbanization to Heat Wave Trends in Wet Climates. Geophysical Research Letters, 2018, 45, 11,310.	1.5	93
49	Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landscape and Urban Planning, 2018, 177, 47-63.	3.4	301
50	Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. International Journal of Geographical Information Science, 2018, 32, 2294-2316.	2.2	177
51	Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: a case study of central Shandong. International Journal of Remote Sensing, 2018, 39, 8703-8723.	1.3	103
52	Delineating urban functional areas with building-level social media data: A dynamic time warping (DTW) distance based k -medoids method. Landscape and Urban Planning, 2017, 160, 48-60.	3.4	179
53	Experiences and issues of using cellular automata for assisting urban and regional planning in China. International Journal of Geographical Information Science, 2017, 31, 1606-1629.	2.2	55
54	A CA-based land system change model: LANDSCAPE. International Journal of Geographical Information Science, 2017, 31, 1798-1817.	2.2	45

#	Article	IF	CITATIONS
55	Classifying urban land use by integrating remote sensing and social media data. International Journal of Geographical Information Science, 2017, 31, 1675-1696.	2.2	231
56	A New Global Land-Use and Land-Cover Change Product at a 1-km Resolution for 2010 to 2100 Based on Human–Environment Interactions. Annals of the American Association of Geographers, 2017, 107, 1040-1059.	1.5	206
57	Contribution of urbanization to the increase of extreme heat events in an urban agglomeration in east China. Geophysical Research Letters, 2017, 44, 6940-6950.	1.5	161
58	Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China's megacities. Applied Energy, 2017, 185, 189-200.	5.1	306
59	A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 2017, 168, 94-116.	3.4	940
60	Calibrating a Land Parcel Cellular Automaton (LP-CA) for urban growth simulation based on ensemble learning. International Journal of Geographical Information Science, 2017, 31, 2480-2504.	2.2	31
61	Exploring the performance of spatio-temporal assimilation in an urban cellular automata model. International Journal of Geographical Information Science, 2017, 31, 2195-2215.	2.2	5
62	Simulating urban land-use changes at a large scale by integrating dynamic land parcel subdivision and vector-based cellular automata. International Journal of Geographical Information Science, 2017, 31, 2452-2479.	2.2	74
63	Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model. International Journal of Geographical Information Science, 2017, 31, 825-848.	2.2	306
64	Estimated influence of urbanization on surface warming in Eastern China using timeâ€varying land use data. International Journal of Climatology, 2017, 37, 3197-3208.	1.5	50
65	The Impact of Energy Consumption on the Surface Urban Heat Island in China's 32 Major Cities. Remote Sensing, 2017, 9, 250.	1.8	56
66	Capturing the varying effects of driving forces over time for the simulation of urban growth by using survival analysis and cellular automata. Landscape and Urban Planning, 2016, 152, 59-71.	3.4	102
67	A cellular automata downscaling based 1 km global land use datasets (2010–2100). Science Bulletin, 2016, 61, 1651-1661.	4.3	68
68	Global snow cover estimation with Microwave Brightness Temperature measurements and one-class in situ observations. Remote Sensing of Environment, 2016, 182, 227-251.	4.6	20
69	A Normalized Urban Areas Composite Index (NUACI) Based on Combination of DMSP-OLS and MODIS for Mapping Impervious Surface Area. Remote Sensing, 2015, 7, 17168-17189.	1.8	73
70	Integrating ensemble-urban cellular automata model with an uncertainty map to improve the performance of a single model. International Journal of Geographical Information Science, 2015, 29, 762-785.	2.2	44
71	Self-modifying CA model using dual ensemble Kalman filter for simulating urban land-use changes. International Journal of Geographical Information Science, 2015, 29, 1612-1631.	2.2	9
72	Exploring the response of net primary productivity variations to urban expansion and climate change: A scenario analysis for Guangdong Province in China. Journal of Environmental Management, 2015, 150, 92-102.	3.8	31

#	Article	IF	CITATIONS
73	A systematic sensitivity analysis of constrained cellular automata model for urban growth simulation based on different transition rules. International Journal of Geographical Information Science, 2014, 28, 1317-1335.	2.2	79
74	Simulating urban growth by integrating landscape expansion index (LEI) and cellular automata. International Journal of Geographical Information Science, 2014, 28, 148-163.	2.2	212
75	A maximum entropy method to extract urban land by combining MODIS reflectance, MODIS NDVI, and DMSP-OLS data. International Journal of Remote Sensing, 2014, 35, 6708-6727.	1.3	38
76	Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. International Journal of Geographical Information Science, 2014, 28, 234-255.	2.2	194
77	Aggregative model-based classifier ensemble for improving land-use/cover classification of Landsat TM Images. International Journal of Remote Sensing, 2014, 35, 1481-1495.	1.3	23
78	Quantifying the relationship between urban forms and carbon emissions using panel data analysis. Landscape Ecology, 2013, 28, 1889-1907.	1.9	199
79	An improved artificial immune system for seeking the Pareto front of land-use allocation problem in large areas. International Journal of Geographical Information Science, 2013, 27, 922-946.	2.2	78
80	Simulating Urban Form and Energy Consumption in the Pearl River Delta Under Different Development Strategies. Annals of the American Association of Geographers, 2013, 103, 1567-1585.	3.0	31
81	Early warning of illegal development for protected areas by integrating cellular automata with neural networks. Journal of Environmental Management, 2013, 130, 106-116.	3.8	39
82	Simulation of spatial population dynamics based on labor economics and multi-agent systems: a case study on a rapidly developing manufacturing metropolis. International Journal of Geographical Information Science, 2013, 27, 2410-2435.	2.2	17
83	Calibrating cellular automata based on landscape metrics by using genetic algorithms. International Journal of Geographical Information Science, 2013, 27, 594-613.	2.2	78
84	Assimilating process context information of cellular automata into change detection for monitoring land use changes. International Journal of Geographical Information Science, 2012, 26, 1667-1687.	2.2	19
85	GPU-CA model for large-scale land-use change simulation. Science Bulletin, 2012, 57, 2442-2452.	1.7	17
86	Coupling urban cellular automata with ant colony optimization for zoning protected natural areas under a changing landscape. International Journal of Geographical Information Science, 2011, 25, 575-593.	2.2	75
87	Concepts, methodologies, and tools of an integrated geographical simulation and optimization system. International Journal of Geographical Information Science, 2011, 25, 633-655.	2.2	73
88	A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landscape Ecology, 2010, 25, 671-682.	1.9	338
89	Parallel cellular automata for large-scale urban simulation using load-balancing techniques. International Journal of Geographical Information Science, 2010, 24, 803-820.	2.2	56
90	An agent-based model for optimal land allocation (AgentLA) with a contiguity constraint. International Journal of Geographical Information Science, 2010, 24, 1269-1288.	2.2	37

#	Article	IF	CITATIONS
91	Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata. International Journal of Geographical Information Science, 2010, 24, 783-802.	2.2	102
92	Intelligent GIS for solving highâ€dimensional site selection problems using ant colony optimization techniques. International Journal of Geographical Information Science, 2009, 23, 399-416.	2.2	51
93	Simulating complex urban development using kernel-based non-linear cellular automata. Ecological Modelling, 2008, 211, 169-181.	1.2	141
94	Discovering and evaluating urban signatures for simulating compact development using cellular automata. Landscape and Urban Planning, 2008, 86, 177-186.	3.4	108
95	A bottomâ€up approach to discover transition rules of cellular automata using ant intelligence. International Journal of Geographical Information Science, 2008, 22, 1247-1269.	2.2	156
96	Discovery of transition rules for geographical cellular automata by using ant colony optimization. Science in China Series D: Earth Sciences, 2007, 50, 1578-1588.	0.9	52
97	An extended cellular automaton using caseâ€based reasoning for simulating urban development in a large complex region. International Journal of Geographical Information Science, 2006, 20, 1109-1136.	2.2	88
98	Integrating multi-source big data to infer building functions. International Journal of Geographical Information Science, 0, , 1-20.	2.2	44