
Helen C Suter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9212458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: a review of enhanced efficiency fertilisers. Soil Research, 2008, 46, 289.	0.6	244
2	Using nitrification inhibitors to mitigate agricultural N ₂ O emission: a doubleâ€edged sword?. Global Change Biology, 2017, 23, 485-489.	4.2	180
3	Influence of nitrification inhibitors on nitrification and nitrous oxide (N2O) emission from a clay Ioam soil fertilized with urea. Soil Biology and Biochemistry, 2010, 42, 660-664.	4.2	134
4	Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest. Science of the Total Environment, 2021, 755, 142449.	3.9	92
5	Effects of the Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate on Nitrification and Nitrifiers in Two Contrasting Agricultural Soils. Applied and Environmental Microbiology, 2016, 82, 5236-5248.	1.4	90
6	Nitrifierâ€induced denitrification is an important source of soil nitrous oxide and can be inhibited by a nitrification inhibitor 3,4â€dimethylpyrazole phosphate. Environmental Microbiology, 2017, 19, 4851-4865.	1.8	75
7	The effect of temperature and moisture on the source of N2O and contributions from ammonia oxidizers in an agricultural soil. Biology and Fertility of Soils, 2017, 53, 141-152.	2.3	69
8	Dissimilatory nitrate reduction to ammonium dominates nitrate reduction in long-term low nitrogen fertilized rice paddies. Soil Biology and Biochemistry, 2019, 131, 149-156.	4.2	64
9	Nitrification Is a Primary Driver of Nitrous Oxide Production in Laboratory Microcosms from Different Land-Use Soils. Frontiers in Microbiology, 2016, 7, 1373.	1.5	62
10	Effects of 3,4-dimethylpyrazole phosphate (DMPP) on nitrification and the abundance and community composition of soil ammonia oxidizers in three land uses. Biology and Fertility of Soils, 2016, 52, 927-939.	2.3	56
11	The effect of nitrification inhibitors in reducing nitrification and the ammonia oxidizer population in three contrasting soils. Journal of Soils and Sediments, 2015, 15, 1113-1118.	1.5	53
12	Using urease and nitrification inhibitors to decrease ammonia and nitrous oxide emissions and improve productivity in a subtropical pasture. Science of the Total Environment, 2018, 644, 1531-1535.	3.9	48
13	Influence of urea fertiliser formulation, urease inhibitor and season on ammonia loss from ryegrass. Nutrient Cycling in Agroecosystems, 2013, 95, 175-185.	1.1	47
14	Influence of temperature and moisture on the relative contributions of heterotrophic and autotrophic nitrification to gross nitrification in an acid cropping soil. Journal of Soils and Sediments, 2015, 15, 2304-2309.	1.5	44
15	Influence of temperature and soil type on inhibition of urea hydrolysis by N-(n-butyl) thiophosphoric triamide in wheat and pasture soils in south-eastern Australia. Soil Research, 2011, 49, 315.	0.6	41
16	Nitrogen Addition Decreases Dissimilatory Nitrate Reduction to Ammonium in Rice Paddies. Applied and Environmental Microbiology, 2018, 84, .	1.4	39
17	Direct and indirect greenhouse gas emissions from two intensive vegetable farms applied with a nitrification inhibitor. Soil Biology and Biochemistry, 2018, 116, 48-51.	4.2	37
18	Response of ammonia oxidizers and denitrifiers to repeated applications of a nitrification inhibitor and a urease inhibitor in two pasture soils. Journal of Soils and Sediments, 2017, 17, 974-984.	1.5	36

HELEN C SUTER

#	Article	IF	CITATIONS
19	Effects of repeated applications of urea with DMPP on ammonia oxidizers, denitrifiers, and non-targeted microbial communities of an agricultural soil in Queensland, Australia. Applied Soil Ecology, 2020, 147, 103392.	2.1	26
20	Influence of enhanced efficiency fertilisation techniques on nitrous oxide emissions and productivity response from urea in a temperate Australian ryegrass pasture. Soil Research, 2016, 54, 523.	0.6	23
21	Effects of the nitrification inhibitor acetylene on nitrous oxide emissions and ammonia-oxidizing microorganisms of different agricultural soils under laboratory incubation conditions. Applied Soil Ecology, 2017, 119, 80-90.	2.1	22
22	Enhanced efficiency fertilisers reduce nitrous oxide emissions and improve fertiliser 15N recovery in a Southern Australian pasture. Science of the Total Environment, 2020, 699, 134147.	3.9	22
23	Effects of nitrification inhibitors on gross N nitrification rate, ammonia oxidizers, and N2O production under different temperatures in two pasture soils. Environmental Science and Pollution Research, 2018, 25, 28344-28354.	2.7	20
24	Lignite addition during anaerobic digestion of ammonium rich swine manure enhances biogas production. Journal of Environmental Chemical Engineering, 2021, 9, 104669.	3.3	20
25	Use of open-path FTIR and inverse dispersion technique to quantify gaseous nitrogen loss from an intensive vegetable production site. Atmospheric Environment, 2014, 94, 687-691.	1.9	19
26	Nitrate production is mainly heterotrophic in an acid dairy soil with high organic content in Australia. Biology and Fertility of Soils, 2015, 51, 891-896.	2.3	19
27	Measurement and mitigation of nitrous oxide emissions from a high nitrogen input vegetable system. Scientific Reports, 2015, 5, 8208.	1.6	16
28	Decreasing ammonia loss from an Australian pasture with the use of enhanced efficiency fertilizers. Agriculture, Ecosystems and Environment, 2019, 283, 106553.	2.5	16
29	LONG-TERM EFFECTS OF MUNICIPAL SEWAGE ON SOILS AND PASTURES. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2002, 37, 745-757.	0.9	15
30	Gaseous emissions from an intensive vegetable farm measured with slant-path FTIR technique. Agricultural and Forest Meteorology, 2018, 258, 50-55.	1.9	15
31	Stimulation of heterotrophic nitrification and N2O production, inhibition of autotrophic nitrification in soil by adding readily degradable carbon. Journal of Soils and Sediments, 2020, 20, 81-90.	1.5	15
32	Which multispectral indices robustly measure canopy nitrogen across seasons: Lessons from an irrigated pasture crop. Computers and Electronics in Agriculture, 2021, 182, 106000.	3.7	15
33	Dissimilatory nitrate ammonification and N2 fixation helps maintain nitrogen nutrition in resource-limited rice paddies. Biology and Fertility of Soils, 2021, 57, 107-115.	2.3	14
34	Responses of ureolytic and nitrifying microbes to urease and nitrification inhibitors in selected agricultural soils in Victoria, Australia. Journal of Soils and Sediments, 2020, 20, 1309-1322.	1.5	13
35	Comparison of Sequential Indicator Simulation and Transition Probability Indicator Simulation Used to Model Clay Content in Microscale Surface Soil. Soil Science, 2009, 174, 395-402.	0.9	11
36	Three dimensional spatial distribution modeling of soil texture under agricultural systems using a sequence indicator simulation algorithm. Computers and Electronics in Agriculture, 2010, 71, S24-S31.	3.7	10

HELEN C SUTER

#	Article	IF	CITATIONS
37	Lignite Improved the Quality of Composted Manure and Mitigated Emissions of Ammonia and Greenhouse Gases during Forced Aeration Composting. Sustainability, 2020, 12, 10528.	1.6	10
38	Assembly of Metal–Phenolic Networks on Waterâ€ 5 oluble Substrates in Nonaqueous Media. Advanced Functional Materials, 2022, 32, .	7.8	10
39	Comparison of slant open-path flux gradient and static closed chamber techniques to measure soil N ₂ O emissions. Atmospheric Measurement Techniques, 2019, 12, 1095-1102.	1.2	9
40	Predicting ammonia volatilization from fertilized pastures used for grazing. Agricultural and Forest Meteorology, 2020, 287, 107952.	1.9	8
41	Research meetings must be more sustainable. Nature Food, 2020, 1, 187-189.	6.2	7
42	Opportunities to improve nitrogen use efficiency in an intensive vegetable system without compromising yield. Journal of Environmental Quality, 2021, 50, 791-798.	1.0	7
43	Ammonia, methane and nitrous oxide emissions from furrow irrigated cotton crops from two nitrogen fertilisers and application methods. Agricultural and Forest Meteorology, 2021, 303, 108375.	1.9	7
44	Benefits from enhanced-efficiency nitrogen fertilisers in rainfed temperate pastures are seasonally driven. Soil Research, 2022, 60, 147-157.	0.6	3
45	A short-term study of wheat grain protein response to post-anthesis foliar nitrogen application under elevated CO 2 and supplementary irrigation. Journal of Cereal Science, 2017, 75, 135-137.	1.8	2
46	Nitrogen transformation rates and N2O producing pathways in two pasture soils. Journal of Soils and Sediments, 2018, 18, 2970-2979.	1.5	2
47	Temporal response of ureolytic and ammonia-oxidizing microbes and pasture yield to urea and NBPT at Leigh Creek of Victoria in Australia. Applied Soil Ecology, 2021, 164, 103922.	2.1	2
48	The effectiveness of nitrification inhibitor application on grain yield and quality, fertiliser nitrogen recovery and soil nitrous oxide emissions in a legume–wheat rotation under elevated carbon dioxide (FACE). Soil Research, 2018, 56, 145.	0.6	0
49	Factors affecting ammonium capture by some Victorian lignites. Environmental Technology (United) Tj ETQq1 1	0.784314 1.2	rgBT /Overlo