Thomas B Shea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9211985/publications.pdf

Version: 2024-02-01

86 papers

4,505 citations

36 h-index 102487 66 g-index

86 all docs 86 docs citations

86 times ranked 4163 citing authors

#	Article	IF	Citations
1	An Overview of Studies Demonstrating that ex vivo Neuronal Networks Display Multiple Complex Behaviors: Emergent Properties of Nearest-Neighbor Interactions of Excitatory and Inhibitory Neurons The Open Neurology Journal, 2021, 15, 3-15.	0.4	1
2	Improvement of cognitive performance by a nutraceutical formulation: Underlying mechanisms revealed by laboratory studies. Free Radical Biology and Medicine, 2021, 174, 281-304.	2.9	3
3	Tau interferes with axonal neurite stabilization and cytoskeletal composition independently of its ability to associate with microtubules. Biology Open, 2020, 9, .	1.2	O
4	Synaptic Signals from Glutamate-Treated Neurons Induce Aberrant Post-Synaptic Signals in Untreated Neuronal Networks. The Open Neurology Journal, 2020, 14, 59-62.	0.4	1
5	Neurofilaments form flexible bundles during neuritogenesis in culture and in mature axons <i>in situ</i> . Journal of Neuroscience Research, 2019, 97, 1306-1318.	2.9	O
6	Choline and phosphatidylcholine may maintain cognitive performance by multiple mechanisms. American Journal of Clinical Nutrition, 2019, 110, 1268-1269.	4.7	11
7	Assembly and turnover of neurofilaments in growing axonal neurites. Biology Open, 2018, 7, .	1.2	15
8	While I Still Remember: 30 Years of Alzheimer's Disease Research. Journal of Alzheimer's Disease, 2018, 62, 1049-1057.	2.6	4
9	A High-fat and High-Cholesterol Diet Potentiates Oxidative Damage in Hippocampus of Mice Lacking Apolipoprotein E. The Open Neurology Journal, 2018, 12, 12-18.	0.4	4
10	Influence of a GSK3 \hat{l}^2 phosphorylation site within the proximal C-terminus of neurofilament-H on neurofilament dynamics. Biology Open, 2017, 6, 1516-1527.	1.2	4
11	Robot-Embodied Neuronal Networks as an Interactive Model of Learning. The Open Neurology Journal, 2017, 11, 39-47.	0.4	4
12	Omega-3 Hastens and Omega-6 Delays the Progression of Neuropathology in a Murine Model of Familial ALS. The Open Neurology Journal, 2017, 11, 84-91.	0.4	10
13	Insufficient developmental excitatory neuronal activity fails to foster establishment of normal levels of inhibitory neuronal activity. International Journal of Developmental Neuroscience, 2016, 55, 66-71.	1.6	3
14	Additive Impairment of Synaptic Signaling in Cultured Cortical Neurons by Exogenously-Applied Oligomerized Amyloid-β and Airborne Nanoparticles Generated during Photocopying. Journal of Alzheimer's Disease, 2015, 47, 49-54.	2.6	4
15	Biological and simulated neuronal networks show similar competence on a visual tracking task. , $2015, , .$		3
16	A Phase II Randomized Clinical Trial of a Nutritional Formulation for Cognition and Mood in Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 45, 395-405.	2.6	96
17	Early expression of the high molecular weight neurofilament subunit attenuates axonal neurite outgrowth. Neuroscience Letters, 2015, 604, 36-41.	2.1	8
18	Cognitive testing for dementia is adversely affected by administration in a foreign location. BMC Research Notes, 2015, 8, 66.	1.4	2

#	Article	IF	Citations
19	Nutritional supplementation for Alzheimerʽs disease?. Current Opinion in Psychiatry, 2015, 28, 141-147.	6.3	25
20	Has Prenatal Folate Supplementation Established an At-Risk Population for Age-Related Cognitive Decline?. Journal of Alzheimer's Disease, 2014, 41, 667-669.	2.6	4
21	Lifetime requirement of the methionine cycle for neuronal development and maintenance. Current Opinion in Psychiatry, 2014, 27, 138-142.	6.3	22
22	Divergent and convergent roles for kinases and phosphatases in neurofilament dynamics. Journal of Cell Science, 2014, 127, 4064-77.	2.0	32
23	The discontinuous nature of neurofilament transport accommodates both establishment and repair of the axonal neurofilament array. Cytoskeleton, 2013, 70, 67-73.	2.0	15
24	Transient epileptiform signaling during neuronal network development: regulation by external stimulation and bimodal GABAergic activity. International Journal of Developmental Neuroscience, 2013, 31, 131-137.	1.6	9
25	Nutrition and Dementia: Are we Asking the Right Questions?. Journal of Alzheimer's Disease, 2012, 30, 27-33.	2.6	21
26	Positive argument for debate in J Neural Transmission: Alzheimer's disease: are we intervening too late? Yes, by years if not decades. Journal of Neural Transmission, 2012, 119, 1529-1532.	2.8	8
27	Stimulation with a low-amplitude, digitized synaptic signal to invoke robust activity within neuronal networks on multielectrode arrays. BioTechniques, 2012, 52, 177-182.	1.8	16
28	Interference with kinesinâ€based anterograde neurofilament axonal transport increases neurofilamentâ€neurofilament bundling. Cytoskeleton, 2012, 69, 371-379.	2.0	16
29	Câ€terminal neurofilament phosphorylation fosters neurofilament–neurofilament associations that compete with axonal transport. Cytoskeleton, 2011, 68, 8-17.	2.0	22
30	Neurofilament phosphorylation regulates axonal transport by an indirect mechanism: A merging of opposing hypotheses. Cytoskeleton, 2011, 68, 589-595.	2.0	18
31	Differential roles of kinesin and dynein in translocation of neurofilaments into axonal neurites. Journal of Cell Science, 2011, 124, 1022-1031.	2.0	17
32	Inhibitory neurons modulate spontaneous signaling in cultured cortical neurons: density-dependent regulation of excitatory neuronal signaling. Physical Biology, 2010, 7, 026009.	1.8	18
33	Apple Juice Improved Behavioral But Not Cognitive Symptoms in Moderate-to-Late Stage Alzheimer's Disease in an Open-Label Pilot Study. American Journal of Alzheimer's Disease and Other Dementias, 2010, 25, 367-371.	1.9	33
34	Neurofilament cross-bridging competes with kinesin-dependent association of neurofilaments with microtubules. Journal of Cell Science, 2009, 122, 3579-3586.	2.0	29
35	Dietary deficiency increases presenilin expression, gammaâ€secretase activity, and Abeta levels: potentiation by ApoE genotype and alleviation by <i>S</i> â€adenosyl methionine. Journal of Neurochemistry, 2009, 110, 831-836.	3.9	33
36	Efficacy of a Vitamin/Nutriceutical Formulation for Moderate-stage to Later-stage Alzheimer's disease: A Placebo-controlled Pilot Study. American Journal of Alzheimer's Disease and Other Dementias, 2009, 24, 27-33.	1.9	112

#	Article	IF	Citations
37	Neurofilament dynamics: a tug of war by microtubule motors. Future Neurology, 2009, 4, 351-362.	0.5	2
38	Tau inhibits anterograde axonal transport and perturbs stability in growing axonal neurites in part by displacing kinesin cargo: Neurofilaments attenuate tauâ€mediated neurite instability. Cytoskeleton, 2008, 65, 89-99.	4.4	81
39	Folate deprivation increases tau phosphorylation by homocysteine-induced calcium influx and by inhibition of phosphatase activity: Alleviation by S-adenosyl methionine. Brain Research, 2008, 1199, 133-137.	2.2	31
40	Chapter 3 Folate Deprivation, the Methionine Cycle, and Alzheimer's Disease. Vitamins and Hormones, 2008, 79, 83-97.	1.7	16
41	Folate and S-adenosylmethionine modulate synaptic activity in cultured cortical neurons: acute differential impact on normal and apolipoprotein-deficient mice. Physical Biology, 2008, 5, 044002.	1.8	12
42	Folate deprivation increases presenilin expression, gammaâ€secretase activity, and Abeta levels in murine brain: potentiation by ApoE deficiency and alleviation by dietary <i>S</i> à€adenosyl methionine. Journal of Neurochemistry, 2007, 102, 753-760.	3.9	66
43	Inhibition of dynein but not kinesin induces aberrant focal accumulation of neurofilaments within axonal neurites. Brain Research, 2007, 1164, 125-131.	2.2	21
44	Effects of Dietary Supplementation with N-Acetyl Cysteine, Acetyl-l-Carnitine and S-Adenosyl Methionine on Cognitive Performance and Aggression in Normal Mice and Mice Expressing Human ApoE4. NeuroMolecular Medicine, 2007, 9, 264-269.	3.4	58
45	Dynein mediates retrograde neurofilament transport within axons and anterograde delivery of NFs from perikarya into axons: Regulation by multiple phosphorylation events. Cytoskeleton, 2006, 63, 266-286.	4.4	66
46	Expression and activity of methionine cycle genes are altered following folate and vitamin E deficiency under oxidative challenge: Modulation by apolipoprotein E-deficiency. Nutritional Neuroscience, 2006, 9, 17-24.	3.1	16
47	Folate, vitamin E, and acetyl-l-carnitine provide synergistic protection against oxidative stress resulting from exposure of human neuroblastoma cells to amyloid-beta. Brain Research, 2005, 1061, 114-117.	2.2	65
48	Mitogen-activated protein kinase regulates neurofilament axonal transport. Journal of Cell Science, 2004, 117, 4629-4642.	2.0	50
49	Neurofilament Transport Is Dependent on Actin and Myosin. Journal of Neuroscience, 2004, 24, 9486-9496.	3.6	45
50	Cdk5 regulates axonal transport and phosphorylation of neurofilaments in cultured neurons. Journal of Cell Science, 2004, 117, 933-941.	2.0	69
51	Folate deficiency and homocysteine induce toxicity in cultured dorsal root ganglion neurons via cytosolic calcium accumulation. Aging Cell, 2004, 3, 71-76.	6.7	63
52	Folate and Vitamin E Deficiency Impair Cognitive Performance in Mice Subjected to Oxidative Stress: Differential Impact on Normal Mice and Mice Lacking Apolipoprotein E. NeuroMolecular Medicine, 2003, 4, 197-202.	3.4	29
53	Regulation of the transition from vimentin to neurofilaments during neuronal differentiation. Cytoskeleton, 2003, 56, 193-205.	4.4	53
54	Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends in Neurosciences, 2003, 26, 137-146.	8.6	749

#	Article	IF	Citations
55	Folate deprivation induces neurodegeneration: roles of oxidative stress and increased homocysteine. Neurobiology of Disease, 2003, 14, 32-42.	4.4	214
56	Folate quenches oxidative damage in brains of apolipoprotein E-deficient mice: augmentation by vitamin E. Molecular Brain Research, 2002, 108, 1-6.	2.3	65
57	Multiple aspects of homocysteine neurotoxicity: Glutamate excitotoxicity, kinase hyperactivation and DNA damage. Journal of Neuroscience Research, 2002, 70, 694-702.	2.9	326
58	Acetyl-L-carnitine protects against amyloid-beta neurotoxicity: roles of oxidative buffering and ATP levels. Neurochemical Research, 2002, 27, 501-505.	3.3	53
59	Neurofilaments Consist of Distinct Populations That Can Be Distinguished by C-Terminal Phosphorylation, Bundling, and Axonal Transport Rate in Growing Axonal Neurites. Journal of Neuroscience, 2001, 21, 2195-2205.	3.6	104
60	Homocysteine potentiates βâ€amyloid neurotoxicity: role of oxidative stress. Journal of Neurochemistry, 2001, 78, 249-253.	3.9	244
61	The predominant form in which neurofilament subunits undergo axonal transport varies during axonal initiation, elongation, and maturation. Cytoskeleton, 2001, 48, 61-83.	4.4	78
62	Phospho-dependent association of neurofilament proteins with kinesin in situ. Cytoskeleton, 2000, 45, 249-262.	4.4	104
63	Neuronal intermediate filament protein ?-internexin facilitates axonal neurite elongation in neuroblastoma cells. Cytoskeleton, 1999, 43, 322-333.	4.4	42
64	Selective stabilization of microtubules within the proximal region of developing axonal neurites. Brain Research Bulletin, 1999, 48, 255-261.	3.0	47
65	Regulation of neurofilament axonal transport by phosphorylation in optic axons in situ. Cytoskeleton, 1999, 42, 230-240.	4.4	3
66	Neurofilament subunits can undergo axonal transport without incorporation into Triton-insoluble structures., 1998, 40, 44-58.		41
67	Triton-soluble phosphovariants of the heavy neurofilament subunit in developing and mature mouse central nervous system. Journal of Neuroscience Research, 1997, 48, 515-523.	2.9	35
68	Role of vimentin in early stages of neuritogenesis in cultured hippocampal neurons. International Journal of Developmental Neuroscience, 1996, 14, 739-748.	1.6	90
69	Regulation of neuronal differentiation by the \hat{l}_\pm and \ddot{l}_μ isoforms of protein kinase C. Neuroscience Research Communications, 1996, 18, 195-201.	0.2	1
70	Calcium Influx into Human Neuroblastoma Cells Induces ALZâ€50 Immunoreactivity: Involvement of Calpainâ€Mediated Hydrolysis of Protein Kinase C. Journal of Neurochemistry, 1996, 66, 1539-1549.	3.9	54
71	Proteolysis of protein kinase C: mM and μM calcium-requiring calpains have different abilities to generate, and degrade the free catalytic subunit, protein kinase M. FEBS Letters, 1995, 367, 223-227.	2.8	63
72	Enhancement of Neurite Outgrowth Following Calpain Inhibition Is Mediated by Protein Kinase C. Journal of Neurochemistry, 1995, 65, 517-527.	3.9	42

#	Article	IF	CITATIONS
73	Degradation of protein kinase Cα and its free catalytic subunit, protein kinase M, in intact human neuroblastoma cells and under cell-free conditions. FEBS Letters, 1994, 350, 223-229.	2.8	46
74	Triton-soluble phosphovariants of the high molecular weight neurofilament subunit from NB2a/dl cells are assembly-competent. FEBS Letters, 1994, 343, 131-136.	2.8	9
75	Differential Expression and Subcellular Localization of Protein Kinase C?,?,?,?, and? Isoforms in SH-SY5Y Neuroblastoma Cells: Modifications During Differentiation. Journal of Neurochemistry, 1993, 60, 289-298.	3.9	74
76	Intracellular delivery of protein kinase C- \hat{l}_{\pm} or \hat{l}_{μ} isoform-specific antibodies promotes acquisition of a morphologically differentiated phenotype in neuroblastoma cells. FEBS Letters, 1992, 297, 91-94.	2.8	43
77	Regulation of neuronal migration and neuritogenesis by distinct surface proteases Relative contribution of plasmin and a thrombin-like protease. FEBS Letters, 1992, 307, 190-194.	2.8	19
78	Aluminum inhibits neurofilament protein degradation by multiple cytoskeleton-associated proteases. FEBS Letters, 1992, 307, 195-198.	2.8	28
79	Aluminum Alters the Electrophoretic Properties of Neurofilament Proteins: Role of Phosphorylation State. Journal of Neurochemistry, 1992, 58, 542-547.	3.9	43
80	Distinct Mechanisms of Differentiation of SH-SY5Y Neuroblastoma Cells by Protein Kinase C Activators and Inhibitors. Journal of Neurochemistry, 1992, 58, 1191-1198.	3.9	54
81	Dynamics of neuronal intermediate filaments: A developmental perspective. Cytoskeleton, 1992, 22, 81-91.	4.4	207
82	Multiple Proteases Regulate Neurite Outgrowth in NB2a/dl Neuroblastoma Cells. Journal of Neurochemistry, 1991, 56, 842-851.	3.9	49
83	Dynamics of Phosphorylation and Assembly of the High Molecular Weight Neurofilament Subunit in NB2a/d1 Neuroblastoma. Journal of Neurochemistry, 1990, 55, 1784-1792.	3.9	58
84	Post-translational modification of $\hat{l}\pm$ -tubulin by acetylation and detyrosination in NB2a/d1 neuroblastoma cells. Developmental Brain Research, 1990, 51, 195-204.	1.7	18
85	Expression of a Plasma Membrane Proteolipid During Differentiation of Neuronal and Glial Cells in Primary Culture. Journal of Neurochemistry, 1986, 47, 697-706.	3.9	17
86	Effect of retinoic acid on growth and morphological differentiation of mouse NB2a neuroblastoma cells in culture. Developmental Brain Research, 1985, 21, 307-314.	1.7	119