Anna Zadlo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9211903/publications.pdf

Version: 2024-02-01

623188 580395 26 687 14 25 h-index citations g-index papers 28 28 28 1162 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	TMAO: A small molecule of great expectations. Nutrition, 2015, 31, 1317-1323.	1.1	244
2	Synthetic connectivity, emergence, and self-regeneration in the network of prebiotic chemistry. Science, 2020, 369, .	6.0	79
3	Extending Designed Linear Biocatalytic Cascades for Organic Synthesis. ChemCatChem, 2019, 11, 225-243.	1.8	56
4	Efficient Ugi reactions in an aqueous vesicle system. RSC Advances, 2017, 7, 33344-33354.	1.7	27
5	Structure and Catalytic Mechanism of a Bacterial Friedel–Crafts Acylase. ChemBioChem, 2019, 20, 88-95.	1.3	27
6	Mechanism of Biocatalytic Friedel–Crafts Acylation by Acyltransferase from <i>Pseudomonas protegens</i> . ACS Catalysis, 2020, 10, 570-577.	5.5	24
7	Enzymatic Ugi Reaction with Amines and Cyclic Imines. Chemistry - A European Journal, 2016, 22, 16684-16689.	1.7	21
8	Environmentally friendly approach to \hat{l}_{\pm} -acyloxy carboxamides via a chemoenzymatic cascade. RSC Advances, 2016, 6, 68231-68237.	1.7	21
9	Dynamic Kinetic Resolution of 3-Aryl-4-pentenoic Acids. ACS Catalysis, 2016, 6, 3287-3292.	5.5	19
10	Mixed Carbonates as Useful Substrates for a Fluorogenic Assay for Lipases and Esterases. ChemBioChem, 2015, 16, 677-682.	1.3	18
11	Biocatalytic Asymmetric Reduction of γâ€Keto Esters to Access Optically Active γâ€Arylâ€Î³â€butyrolactones. Advanced Synthesis and Catalysis, 2020, 362, 2012-2029.	2.1	18
12	Enzymeâ€Promoted Asymmetric Tandem Passerini Reaction. ChemCatChem, 2017, 9, 3047-3053.	1.8	16
13	Promiscuous activity of C-acyltransferase from <i>Pseudomonas protegens</i> : synthesis of acetanilides in aqueous buffer. Chemical Communications, 2018, 54, 3387-3390.	2.2	16
14	Thioesters as Acyl Donors in Biocatalytic Friedelâ€Craftsâ€type Acylation Catalyzed by Acyltransferase from <i>Pseudomonas Protegens</i> . ChemCatChem, 2019, 11, 1064-1068.	1.8	15
15	Self-immolative versatile fluorogenic probes for screening of hydrolytic enzyme activity. Organic and Biomolecular Chemistry, 2016, 14, 9146-9150.	1.5	12
16	Enantioselective Reduction of Ethyl 3â€Oxoâ€5â€phenylpentanoate with Wholeâ€Cell Biocatalysts. European Journal of Organic Chemistry, 2016, 2016, 1007-1011.	1.2	12
17	Evaluation of a new protocol for enzymatic dynamic kinetic resolution of 3-hydroxy-3-(aryl)propanoic acids. Organic and Biomolecular Chemistry, 2015, 13, 11014-11020.	1.5	11
18	Rational Engineered C-Acyltransferase Transforms Sterically Demanding Acyl Donors. ACS Catalysis, 2020, 10, 1094-1101.	5.5	10

#	Article	IF	CITATIONS
19	Enzymatic Synergism in the Synthesis of βâ€Keto Esters. European Journal of Organic Chemistry, 2015, 2015, 5432-5437.	1.2	9
20	Molecular cloning, expression, and characterization of acyltransferase from Pseudomonas protegens. Applied Microbiology and Biotechnology, 2018, 102, 6057-6068.	1.7	8
21	The unexpected kinetic effect of enzyme mixture: The case of enzymatic esterification. Journal of Molecular Catalysis B: Enzymatic, 2014, 102, 225-229.	1.8	6
22	The influence of the isocyanoesters structure on the course of enzymatic Ugi reactions. Bioorganic Chemistry, 2019, 93, 102817.	2.0	6
23	A convenient stereoselective synthesis of 5-hydroxy-3-oxoesters and 3-hydroxy-5-oxoesters. Tetrahedron: Asymmetry, 2017, 28, 797-802.	1.8	5
24	Evaluation of Pseudoenantiomeric Mixed Carbonates as Efficient Fluorogenic Probes for Enantioselectivity Screening. ChemBioChem, 2016, 17, 71-76.	1.3	4
25	Bioreactor for the Continuous Purification of Simvastatin by Lovastatin Esterase. Process Biochemistry, 2017, 60, 92-97.	1.8	3
26	Structure and mechanism of C-acyltransferase from Pseudomonas protegens. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e37-e37.	0.0	0