
## **Stephan Thies**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9211867/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Extracellular degradation of a polyurethane oligomer involving outer membrane vesicles and further<br>insights on the degradation of 2,4-diaminotoluene in Pseudomonas capeferrum TDA1. Scientific<br>Reports, 2022, 12, 2666. | 1.6 | 14        |
| 2  | Towards robust <i>Pseudomonas</i> cell factories to harbour novel biosynthetic pathways. Essays in<br>Biochemistry, 2021, 65, 319-336.                                                                                         | 2.1 | 44        |
| 3  | Crystal structures of a novel family IV esterase in free and substrateâ€bound form. FEBS Journal, 2021, 288, 3570-3584.                                                                                                        | 2.2 | 15        |
| 4  | Screening Strategies for Biosurfactant Discovery. Advances in Biochemical Engineering/Biotechnology, 2021, , 17-52.                                                                                                            | 0.6 | 4         |
| 5  | Agar plateâ€based screening methods for the identification of polyester hydrolysis by<br><i>Pseudomonas</i> species. Microbial Biotechnology, 2020, 13, 274-284.                                                               | 2.0 | 62        |
| 6  | The biotechnological potential of marine bacteria in the novel lineage of <i>Pseudomonas pertucinogena</i> . Microbial Biotechnology, 2020, 13, 19-31.                                                                         | 2.0 | 35        |
| 7  | A Straightforward Assay for Screening and Quantification of Biosurfactants in Microbial Culture Supernatants. Frontiers in Bioengineering and Biotechnology, 2020, 8, 958.                                                     | 2.0 | 20        |
| 8  | Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas putida. Frontiers in Bioengineering and Biotechnology, 2020, 8, 976.                                                     | 2.0 | 56        |
| 9  | Engineering of natural product biosynthesis in Pseudomonas putida. Current Opinion in<br>Biotechnology, 2020, 65, 213-224.                                                                                                     | 3.3 | 28        |
| 10 | A Novel Polyester Hydrolase From the Marine Bacterium Pseudomonas aestusnigri – Structural and<br>Functional Insights. Frontiers in Microbiology, 2020, 11, 114.                                                               | 1.5 | 172       |
| 11 | Organic-Solvent-Tolerant Carboxylic Ester Hydrolases for Organic Synthesis. Applied and Environmental Microbiology, 2020, 86, .                                                                                                | 1.4 | 20        |
| 12 | Targeting 16S rDNA for Stable Recombinant Gene Expression in <i>Pseudomonas</i> . ACS Synthetic Biology, 2019, 8, 1901-1912.                                                                                                   | 1.9 | 19        |
| 13 | Marine Biosurfactants: Biosynthesis, Structural Diversity and Biotechnological Applications. Marine Drugs, 2019, 17, 408.                                                                                                      | 2.2 | 97        |
| 14 | Pseudomonas putida rDNA is a favored site for the expression of biosynthetic genes. Scientific Reports, 2019, 9, 7028.                                                                                                         | 1.6 | 20        |
| 15 | Biosynthesis of cycloartenol by expression of plant and bacterial oxidosqualene cyclases in engineered Rhodobacter capsulatus. Journal of Biotechnology, 2019, 306, 100014.                                                    | 1.9 | 7         |
| 16 | Hydrocarbon-Degrading Microbes as Sources of New Biocatalysts. , 2019, , 353-373.                                                                                                                                              |     | 3         |
| 17 | Determinants and Prediction of Esterase Substrate Promiscuity Patterns. ACS Chemical Biology, 2018, 13, 225-234.                                                                                                               | 1.6 | 106       |
| 18 | Konstruktion von Pseudomonas putida -Stänmen zur heterologen Produktion von Rhamnolipiden.<br>Chemie-Ingenieur-Technik, 2018, 90, 1282-1282.                                                                                   | 0.4 | 0         |

STEPHAN THIES

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Hydrocarbon-Degrading Microbes as Sources of New Biocatalysts. , 2018, , 1-21.                                                                                                                     |     | 1         |
| 20 | Disruption of microbial community composition and identification of plant growth promoting microorganisms after exposure of soil to rapeseed-derived glucosinolates. PLoS ONE, 2018, 13, e0200160. | 1.1 | 54        |
| 21 | Natural biocide cocktails: Combinatorial antibiotic effects of prodigiosin and biosurfactants. PLoS<br>ONE, 2018, 13, e0200940.                                                                    | 1.1 | 41        |
| 22 | Rapid generation of recombinant Pseudomonas putida secondary metabolite producers using yTREX.<br>Synthetic and Systems Biotechnology, 2017, 2, 310-319.                                           | 1.8 | 36        |
| 23 | Rhamnolipids: Production, Performance, and Application. , 2017, , 587-622.                                                                                                                         |     | 4         |
| 24 | First Insights into the Genome Sequence of Pseudomonas oleovorans DSM 1045. Genome<br>Announcements, 2017, 5, .                                                                                    | 0.8 | 3         |
| 25 | Rhamnolipids: Production, Performance, and Application. , 2017, , 1-37.                                                                                                                            |     | 2         |
| 26 | Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community. Scientific Reports, 2016, 6, 27035.                                                     | 1.6 | 74        |
| 27 | Efficient recombinant production of prodigiosin in Pseudomonas putida. Frontiers in Microbiology, 2015, 6, 972.                                                                                    | 1.5 | 76        |
| 28 | Pseudomonas putida—a versatile host for the production of natural products. Applied Microbiology<br>and Biotechnology, 2015, 99, 6197-6214.                                                        | 1.7 | 237       |
| 29 | Heterologous production of the lipopeptide biosurfactant serrawettin W1 in Escherichia coli.<br>Journal of Biotechnology, 2014, 181, 27-30.                                                        | 1.9 | 45        |
| 30 | Novel broad host range shuttle vectors for expression in Escherichia coli, Bacillus subtilis and<br>Pseudomonas putida. Journal of Biotechnology, 2012, 161, 71-79.                                | 1.9 | 44        |
| 31 | Pseudomonads as versatile expression hosts. Chemie-Ingenieur-Technik, 2010, 82, 1519-1519.                                                                                                         | 0.4 | 0         |