Giulio Caravagna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9211576/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detecting repeated cancer evolution from multi-region tumor sequencing data. Nature Methods, 2018, 15, 707-714.	9.0	124
2	CAPRI: efficient inference of cancer progression models from cross-sectional data. Bioinformatics, 2015, 31, 3016-3026.	1.8	90
3	Algorithmic methods to infer the evolutionary trajectories in cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4025-34.	3.3	80
4	Exploiting evolutionary steering to induce collateral drug sensitivity in cancer. Nature Communications, 2020, 11, 1923.	5.8	79
5	Subclonal reconstruction of tumors by using machine learning and population genetics. Nature Genetics, 2020, 52, 898-907.	9.4	77
6	Chromatin Velocity reveals epigenetic dynamics by single-cell profiling of heterochromatin and euchromatin. Nature Biotechnology, 2022, 40, 235-244.	9.4	72
7	Spatially constrained tumour growth affects the patterns of clonal selection and neutral drift in cancer genomic data. PLoS Computational Biology, 2019, 15, e1007243.	1.5	59
8	Inferring Tree Causal Models of Cancer Progression with Probability Raising. PLoS ONE, 2014, 9, e108358.	1.1	57
9	Tumour suppression by immune system through stochastic oscillations. Journal of Theoretical Biology, 2010, 265, 336-345.	0.8	56
10	Evolutionary dynamics of residual disease in human glioblastoma. Annals of Oncology, 2019, 30, 456-463.	0.6	47
11	The Interplay of Intrinsic and Extrinsic Bounded Noises in Biomolecular Networks. PLoS ONE, 2013, 8, e51174.	1.1	41
12	TRONCO: an R package for the inference of cancer progression models from heterogeneous genomic data. Bioinformatics, 2016, 32, 1911-1913.	1.8	39
13	Reply to â€~Neutral tumor evolution?'. Nature Genetics, 2018, 50, 1633-1637.	9.4	27
14	The Calculus of Looping Sequences. , 2008, , 387-423.		26
15	Learning mutational graphs of individual tumour evolution from single-cell and multi-region sequencing data. BMC Bioinformatics, 2019, 20, 210.	1.2	25
16	Investigating the Relation between Stochastic Differentiation, Homeostasis and Clonal Expansion in Intestinal Crypts via Multiscale Modeling. PLoS ONE, 2014, 9, e97272.	1.1	18
17	The MOBSTER R package for tumour subclonal deconvolution from bulk DNA whole-genome sequencing data. BMC Bioinformatics, 2020, 21, 531.	1.2	18
18	Bounded noises as a natural tool to model extrinsic fluctuations in biomolecular networks. Natural Computing, 2014, 13, 297-307.	1.8	17

GIULIO CARAVAGNA

#	Article	IF	CITATIONS
19	Delay Stochastic Simulation of Biological Systems: A Purely Delayed Approach. Lecture Notes in Computer Science, 2011, , 61-84.	1.0	16
20	Modeling Cumulative Biological Phenomena with Suppes-Bayes Causal Networks. Evolutionary Bioinformatics, 2018, 14, 117693431878516.	0.6	15
21	CABeRNET: a Cytoscape app for augmented Boolean models of gene regulatory NETworks. BMC Bioinformatics, 2016, 17, 64.	1.2	13
22	Distributed delays in a hybrid model of tumor-Immune system interplay. Mathematical Biosciences and Engineering, 2013, 10, 37-57.	1.0	13
23	Fine-tuning anti-tumor immunotherapies via stochastic simulations. BMC Bioinformatics, 2012, 13, S8.	1.2	12
24	Bio-PEPAd: A non-Markovian extension of Bio-PEPA. Theoretical Computer Science, 2012, 419, 26-49.	0.5	12
25	CoGNaC: A Chaste Plugin for the Multiscale Simulation of Gene Regulatory Networks Driving the Spatial Dynamics of Tissues and Cancer. Cancer Informatics, 2015, 14s4, CIN.S19965.	0.9	12
26	Bounded noise induced first-order phase transitions in a baseline non-spatial model of gene transcription. Physica A: Statistical Mechanics and Its Applications, 2018, 492, 2056-2068.	1.2	11
27	Foundational aspects of multiscale modeling of biological systems with process algebras. Theoretical Computer Science, 2012, 431, 96-116.	0.5	10
28	Gene switching rate determines response to extrinsic perturbations in the self-activation transcriptional network motif. Scientific Reports, 2016, 6, 26980.	1.6	10
29	A Bayesian method to cluster single-cell RNA sequencing data using copy number alterations. Bioinformatics, 2022, 38, 2512-2518.	1.8	10
30	On the Interpretation of Delays in Delay Stochastic Simulation of Biological Systems. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 6, 17-29.	0.8	7
31	G <scp>e</scp> S <scp>to</scp> D <scp>ifferent</scp> : a Cytoscape plugin for the generation and the identification of gene regulatory networks describing a stochastic cell differentiation process. Bioinformatics, 2013, 29, 513-514.	1.8	6
32	Stochastic Hybrid Automata with delayed transitions to model biochemical systems with delays. Information and Computation, 2014, 236, 19-34.	0.5	6
33	Learning the structure of Bayesian Networks via the bootstrap. Neurocomputing, 2021, 448, 48-59.	3.5	6
34	Lazy Security Controllers. Lecture Notes in Computer Science, 2013, , 33-48.	1.0	6
35	PMCE: efficient inference of expressive models of cancer evolution with high prognostic power. Bioinformatics, 2022, 38, 754-762.	1.8	6
36	An Intermediate Language for the Simulation of Biological Systems. Electronic Notes in Theoretical Computer Science, 2008, 194, 19-34.	0.9	5

GIULIO CARAVAGNA

#	Article	IF	CITATIONS
37	Modeling biological systems with delays in Bio-PEPA. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 40, 85-101.	0.8	5
38	An intermediate language for the stochastic simulation of biological systems. Theoretical Computer Science, 2009, 410, 3085-3109.	0.5	3
39	Design of the TRONCO BioConductor Package for TRanslational ONCOlogy. R Journal, 2016, 8, 39.	0.7	3
40	GPU-powered Simulation Methodologies for Biological Systems. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 130, 87-91.	0.8	2
41	Effects of delayed immune-response in tumor immune-system interplay. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 92, 106-121.	0.8	2
42	Matching Models Across Abstraction Levels with Gaussian Processes. Lecture Notes in Computer Science, 2016, , 49-66.	1.0	2
43	Measuring evolutionary cancer dynamics from genome sequencing, one patient at a time. Statistical Applications in Genetics and Molecular Biology, 2020, 19, .	0.2	2
44	Lazy Monitoring for Distributed Computing Environments. , 2012, , .		1
45	Automatising the analysis of stochastic biochemical time-series. BMC Bioinformatics, 2015, 16, S8.	1.2	1
46	Ordering cancer mutational profiles of cross-sectional copy number alterations. International Journal of Data Mining and Bioinformatics, 2016, 15, 59.	0.1	1
47	Bounded Extrinsic Noises Affecting Biochemical Networks with Low Molecule Numbers. Modeling and Simulation in Science, Engineering and Technology, 2013, , 201-221.	0.4	1
48	Aspects of multiscale modelling in a process algebra for biological systems. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 40, 54-69.	0.8	1
49	P Systems with Endosomes. International Journal of Computers, Communications and Control, 2014, 4, 214.	1.2	1
50	The Influence of Nutrients Diffusion on a Metabolism-driven Model of a Multi-cellular System. Fundamenta Informaticae, 2019, 171, 279-295.	0.3	0
51	Ordering copy number alteration data to analyze colorectal cancer progression. EMBnet Journal, 2012, 18, 84.	0.2	0
52	Analysis of the spatial and dynamical properties of a multiscale model of intestinal crypts. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 130, 79-82.	0.8	0
53	Abstract 4232: Spatially constrained tumor growth affects the patterns of clonal selection and neutral drift in cancer genomic data. , 2019, , .		0
54	cyTRON and cyTRON/JS: Two Cytoscape-Based Applications for the Inference of Cancer Evolution Models. Lecture Notes in Computer Science, 2020, , 13-18.	1.0	0