Nariman Yousefi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9211463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Aligned Graphene/Polymer Nanocomposites with Excellent Dielectric Properties for Highâ€Performance Electromagnetic Interference Shielding. Advanced Materials, 2014, 26, 5480-5487.	11.1	1,024
2	Are There Nanoplastics in Your Personal Care Products?. Environmental Science and Technology Letters, 2017, 4, 280-285.	3.9	452
3	Transparent Conductive Films Consisting of Ultralarge Graphene Sheets Produced by Langmuir–Blodgett Assembly. ACS Nano, 2011, 5, 6039-6051.	7.3	394
4	Fabrication of Highly-Aligned, Conductive, and Strong Graphene Papers Using Ultralarge Graphene Oxide Sheets. ACS Nano, 2012, 6, 10708-10719.	7.3	344
5	Environmental performance of graphene-based 3D macrostructures. Nature Nanotechnology, 2019, 14, 107-119.	15.6	286
6	Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites. Journal of Materials Chemistry, 2012, 22, 12709.	6.7	269
7	Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: Mechanical properties and moisture permeability. Composites Part A: Applied Science and Manufacturing, 2013, 49, 42-50.	3.8	242
8	Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon, 2013, 59, 406-417.	5.4	238
9	Wrinkling in graphene sheets and graphene oxide papers. Carbon, 2014, 66, 84-92.	5.4	213
10	Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors. Journal of Materials Chemistry, 2012, 22, 3591.	6.7	177
11	Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir–Blodgett assembly. Journal of Materials Chemistry, 2012, 22, 25072.	6.7	151
12	Green synthesis of carbon dots and their applications. RSC Advances, 2021, 11, 25354-25363.	1.7	113
13	Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon, 2012, 50, 4239-4251.	5.4	109
14	Green Synthesis of High Quantum Yield Carbon Dots from Phenylalanine and Citric Acid: Role of Stoichiometry and Nitrogen Doping. ACS Sustainable Chemistry and Engineering, 2020, 8, 5566-5575.	3.2	81
15	Hierarchically porous, ultra-strong reduced graphene oxide-cellulose nanocrystal sponges for exceptional adsorption of water contaminants. Nanoscale, 2018, 10, 7171-7184.	2.8	75
16	Excellent optoelectrical properties of graphene oxide thin films deposited on a flexible substrate by Langmuir–Blodgett assembly. Journal of Materials Chemistry C, 2013, 1, 6869.	2.7	59
17	Thermophysical and rheological behavior of polystyrene/silica nanocomposites: Investigation of nanoparticle content. Materials & Design, 2011, 32, 4537-4542.	5.1	54
18	Probing the Interaction between Nanoparticles and Lipid Membranes by Quartz Crystal Microbalance with Dissipation Monitoring. Frontiers in Chemistry, 2016, 4, 46.	1.8	43

NARIMAN YOUSEFI

#	Article	IF	CITATIONS
19	Toward More Free-Floating Model Cell Membranes: Method Development and Application to Their Interaction with Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 14339-14348.	4.0	29
20	Graphene oxide sponge as adsorbent for organic contaminants: comparison with granular activated carbon and influence of water chemistry. Environmental Science: Nano, 2020, 7, 2669-2680.	2.2	24
21	Antimicrobial Hierarchically Porous Graphene Oxide Sponges for Water Treatment. ACS Applied Bio Materials, 2019, 2, 1578-1590.	2.3	21
22	Self-Assembly of Ultralarge Graphene Oxide Nanosheets and Alginate into Layered Nanocomposites for Robust Packaging Materials. ACS Applied Nano Materials, 2019, 2, 1431-1444.	2.4	17
23	Laccase-Functionalized Hexagonal Boron Nitride-Coated Sponges for the Removal and Degradation of Anthracene. ACS Applied Nano Materials, 2022, 5, 4493-4505.	2.4	6
24	Self-aligned Graphene Sheets-Polyurethane Nanocomposites. Materials Research Society Symposia Proceedings, 2011, 1344, 1.	0.1	2
25	Highly transparent conducting graphene films produced by langmuir blodgett assembly as flexible electrodes. , 2012, , .		2
26	Reply to the †Comment on "Hierarchically porous, ultra-strong reduced graphene oxide–cellulose nanocrystal sponges for exceptional adsorption of water contaminantsâ€â€™ by J. Ma, Y. Xiong and F. Yu,	2.8	2

Nanoscale, 2019, 11, DOI: 10.1039/C8NR08780F. Nanoscale, 2020, 12, 9899-9901.