AgnÄ— KairytÄ—

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9210957/publications.pdf

Version: 2024-02-01

		393982	476904
35	862	19	29
papers	citations	h-index	g-index
2.5	0.5	2.5	60 .
35	35	35	625
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Raw Sheep Wool Management for Thermal Insulation Materials: The Case of Lithuania. Journal of Natural Fibers, 2022, 19, 14250-14261.	1.7	5
2	Bio-based Foam Insulation. Green Energy and Technology, 2022, , 177-216.	0.4	1
3	Coir Fibers Treated with Henna as a Potential Reinforcing Filler in the Synthesis of Polyurethane Composites. Materials, 2021, 14, 1128.	1.3	13
4	Effects of Physical and Chemical Modification of Sunflower Cake on Polyurethane Composite Foam Properties. Materials, 2021, 14, 1414.	1.3	12
5	Mechanically Strong Polyurethane Composites Reinforced with Montmorillonite-Modified Sage Filler (Salvia officinalis L.). International Journal of Molecular Sciences, 2021, 22, 3744.	1.8	22
6	Casein/Apricot Filler in the Production of Flame-Retardant Polyurethane Composites. Materials, 2021, 14, 3620.	1.3	13
7	Polyurethane Composites Reinforced with Walnut Shell Filler Treated with Perlite, Montmorillonite and Halloysite. International Journal of Molecular Sciences, 2021, 22, 7304.	1.8	17
8	Hemp shivs and corn-starch-based biocomposite boards for furniture industry: Improvement of water resistance and reaction to fire. Industrial Crops and Products, 2021, 166, 113477.	2.5	12
9	Vacuum-Based Impregnation of Liquid Glass into Sunflower Press Cake Particles and Their Use in Bio-Based Rigid Polyurethane Foam. Materials, 2021, 14, 5351.	1.3	3
10	Evaluation of the Performance of Bio-Based Rigid Polyurethane Foam with High Amounts of Sunflower Press Cake Particles. Materials, 2021, 14, 5475.	1.3	6
11	Polyurethane Hybrid Composites Reinforced with Lavender Residue Functionalized with Kaolinite and Hydroxyapatite. Materials, 2021, 14, 415.	1.3	23
12	The Effect of Different Plant Oil Impregnation and Hardening Temperatures on Physical-Mechanical Properties of Modified Biocomposite Boards Made of Hemp Shives and Corn Starch. Materials, 2020, 13, 5275.	1.3	5
13	The Impact of Hemp Shives Impregnated with Selected Plant Oils on Mechanical, Thermal, and Insulating Properties of Polyurethane Composite Foams. Materials, 2020, 13, 4709.	1.3	24
14	Research of Wood Waste as a Potential Filler for Loose-Fill Building Insulation: Appropriate Selection and Incorporation into Polyurethane Biocomposite Foams. Materials, 2020, 13, 5336.	1.3	20
15	Rigid Polyurethane Foams Reinforced with POSS-Impregnated Sugar Beet Pulp Filler. Materials, 2020, 13, 5493.	1.3	19
16	Application of Walnut Shells-Derived Biopolyol in the Synthesis of Rigid Polyurethane Foams. Materials, 2020, 13, 2687.	1.3	25
17	Nutmeg filler as a natural compound for the production of polyurethane composite foams with antibacterial and anti-aging properties. Polymer Testing, 2020, 86, 106479.	2.3	52
18	Fire Suppression and Thermal Behavior of Biobased Rigid Polyurethane Foam Filled with Biomass Incineration Waste Ash. Polymers, 2020, 12, 683.	2.0	36

#	Article	lF	Citations
19	Bio-Based Polyurethane Composite Foams with Improved Mechanical, Thermal, and Antibacterial Properties. Materials, 2020, 13, 1108.	1.3	50
20	Evaluation of self-thermally treated wood plastic composites from wood bark and rapeseed oil-based binder. Construction and Building Materials, 2020, 250, 118842.	3.2	12
21	Effect of walnut shells and silanized walnut shells on the mechanical and thermal properties of rigid polyurethane foams. Polymer Testing, 2020, 87, 106534.	2.3	79
22	Closed Cell Rigid Polyurethane Foams Based on Low Functionality Polyols: Research of Dimensional Stability and Standardised Performance Properties. Materials, 2020, 13, 1438.	1.3	22
23	Curcumin as a natural compound in the synthesis of rigid polyurethane foams with enhanced mechanical, antibacterial and anti-ageing properties. Polymer Testing, 2019, 79, 106046.	2.3	38
24	Colored polyurethane foams with enhanced mechanical and thermal properties. Polymer Testing, 2019, 78, 105986.	2.3	29
25	The impact of hot-water-treated fibre hemp shivs on the water resistance and thermal insulating performance of corn starch bonded biocomposite boards. Industrial Crops and Products, 2019, 137, 290-299.	2.5	15
26	Mechanical Performance of Biodegradable Thermoplastic Polymer-Based Biocomposite Boards from Hemp Shivs and Corn Starch for the Building Industry. Materials, 2019, 12, 845.	1.3	20
27	Moisture-mechanical performance improvement of thermal insulating polyurethane using paper production waste particles grafted with different coupling agents. Construction and Building Materials, 2019, 208, 525-534.	3.2	15
28	Composites of Rigid Polyurethane Foams Reinforced with POSS. Polymers, 2019, 11, 336.	2.0	36
29	Composites of rigid polyurethane foams and silica powder filler enhanced with ionic liquid. Polymer Testing, 2019, 75, 12-25.	2.3	45
30	Synthesis of biomass-derived bottom waste ash based rigid biopolyurethane composite foams: Rheological behaviour, structure and performance characteristics. Composites Part A: Applied Science and Manufacturing, 2019, 117, 193-201.	3.8	26
31	Cleaner production of polyurethane foam: Replacement of conventional raw materials, assessment of fire resistance and environmental impact. Journal of Cleaner Production, 2018, 183, 760-771.	4.6	52
32	Paper waste sludge enhanced ecoâ€efficient polyurethane foam composites: Physical–mechanical properties and microstructure. Polymer Composites, 2018, 39, 1852-1860.	2.3	14
33	Rapeseed-based polyols and paper production waste sludge in polyurethane foam: Physical properties and their prediction models. Industrial Crops and Products, 2018, 112, 119-129.	2.5	22
34	A Study of Rapeseed Oil-Based Polyol Substitution with Bio-based Products to Obtain Dimensionally and Structurally Stable Rigid Polyurethane Foam. Journal of Polymers and the Environment, 2018, 26, 3834-3847.	2.4	5
35	Evaluation of forming mixture composition impact on properties of water blown rigid polyurethane (PUR) foam from rapeseed oil polyol. Industrial Crops and Products, 2015, 66, 210-215.	2.5	74