Jesper BjĶrklund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9210827/publications.pdf Version: 2024-02-01

		331670	414414
32	1,616	21	32
papers	citations	h-index	g-index
32	32	32	2292
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Prospects for dendroanatomy in paleoclimatology – a case study on <i>Picea engelmannii</i> from the Canadian Rockies. Climate of the Past, 2022, 18, 1151-1168.	3.4	7
2	Cell wall dimensions reign supreme: cell wall composition is irrelevant for the temperature signal of latewood density/blue intensity in Scots pine. Dendrochronologia, 2021, 65, 125785.	2.2	23
3	The utility of bulk wood density for tree-ring research. Dendrochronologia, 2021, 69, 125880.	2.2	7
4	A Norway spruce tree-ring width chronology for the Common Era from the Central Scandinavian Mountains. Dendrochronologia, 2021, 70, 125896.	2.2	4
5	Assessing non-linearity in European temperature-sensitive tree-ring data. Dendrochronologia, 2020, 59, 125652.	2.2	26
6	Microdensitometric records from humid subtropical China show distinct climate signals in earlywood and latewood. Dendrochronologia, 2020, 64, 125764.	2.2	15
7	Climatic drivers of Picea growth differ during recruitment and interact with disturbance severity to influence rates of canopy replacement. Agricultural and Forest Meteorology, 2020, 287, 107981.	4.8	9
8	Dendroclimatic potential of dendroanatomy in temperature-sensitive Pinus sylvestris. Dendrochronologia, 2020, 60, 125673.	2.2	36
9	Using Blue Intensity from drought-sensitive Pinus sylvestris in Fennoscandia to improve reconstruction of past hydroclimate variability. Climate Dynamics, 2020, 55, 579-594.	3.8	32
10	Palaeoclimate potential of New Zealand Manoao colensoi (silver pine) tree rings using Blue-Intensity (BI). Dendrochronologia, 2020, 60, 125664.	2.2	21
11	Scientific Merits and Analytical Challenges of Treeâ€Ring Densitometry. Reviews of Geophysics, 2019, 57, 1224-1264.	23.0	98
12	The climatic drivers of primary <i>Picea</i> forest growth along the Carpathian arc are changing under rising temperatures. Global Change Biology, 2019, 25, 3136-3150.	9.5	45
13	Increased sensitivity to drought across successional stages in natural Norway spruce (Picea abies (L.)) Tj ETQq1 1	0,784314 1.9	ł rgBT /Overl ≇0
14	Disentangling the multi-faceted growth patterns of primary Picea abies forests in the Carpathian arc. Agricultural and Forest Meteorology, 2019, 271, 214-224.	4.8	20
15	RAPTOR: Row and position tracheid organizer in R. Dendrochronologia, 2018, 47, 10-16.	2.2	34
16	A 970-year-long summer temperature reconstruction from Rogen, west-central Sweden, based on blue intensity from tree rings. Holocene, 2018, 28, 254-266.	1.7	45
17	The climatic drivers of normalized difference vegetation index and treeâ€ringâ€based estimates of forest productivity are spatially coherent but temporally decoupled in Northern Hemispheric forests. Global Ecology and Biogeography, 2018, 27, 1352-1365.	5.8	47
18	When tree rings go global: Challenges and opportunities for retro- and prospective insight. Quaternary Science Reviews, 2018, 197, 1-20.	3.0	131

Jesper BjĶrklund

#	Article	IF	CITATIONS
19	Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers. New Phytologist, 2017, 216, 728-740.	7.3	141
20	New research perspectives from a novel approach to quantify tracheid wall thickness. Tree Physiology, 2017, 37, 976-983.	3.1	56
21	A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data, 2017, 4, 170088.	5.3	268
22	1200†years of warm-season temperature variability in central Scandinavia inferred from tree-ring density. Climate of the Past, 2016, 12, 1297-1312.	3.4	30
23	Forests on drained agricultural peatland are potentially large sources of greenhouse gases – insights from a full rotation period simulation. Biogeosciences, 2016, 13, 2305-2318.	3.3	18
24	The influence of elevational differences in absolute maximum density values on regional climate reconstructions. Trees - Structure and Function, 2015, 29, 1259-1271.	1.9	12
25	The Potential of Deriving Tree-Ring-Based Field Reconstructions of Droughts and Pluvials over Fennoscandia*,+. Journal of Climate, 2015, 28, 3453-3471.	3.2	19
26	Fennoscandia revisited: a spatially improved tree-ring reconstruction of summer temperatures for the last 900Âyears. Climate Dynamics, 2015, 45, 933-947.	3.8	57
27	Using adjusted Blue Intensity data to attain high-quality summer temperature information: A case study from Central Scandinavia. Holocene, 2015, 25, 547-556.	1.7	54
28	A tree-ring field reconstruction of Fennoscandian summer hydroclimate variability for the last millennium. Climate Dynamics, 2015, 44, 3141-3154.	3.8	29
29	Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information. Climate of the Past, 2014, 10, 877-885.	3.4	90
30	Advances towards improved low-frequency tree-ring reconstructions, using an updated Pinus sylvestris L. MXD network from the Scandinavian Mountains. Theoretical and Applied Climatology, 2013, 113, 697-710.	2.8	35
31	Potential changes in outdoor thermal comfort conditions in Gothenburg, Sweden due to climate change: the influence of urban geometry. International Journal of Climatology, 2011, 31, 324-335.	3.5	134
32	Dendroclimatology in Fennoscandia – from past accomplishments to future potential. Climate of the Past, 2010, 6, 93-114.	3.4	63